File: numsup.h

package info (click to toggle)
argyll 3.3.0%2Brepack-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 33,944 kB
  • sloc: ansic: 402,917; javascript: 36,570; xml: 1,551; sh: 520; makefile: 428
file content (1070 lines) | stat: -rw-r--r-- 32,119 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
#ifndef NUMSUP_H

/*
 * Numerical routine general support declarations
 * + other common Argyll wide support functions.
 */

/*
 * Copyright 2000-2010 Graeme W. Gill
 * All rights reserved.
 *
 * This material is licenced under the GNU GENERAL PUBLIC LICENSE Version 2 or later :-
 * see the License2.txt file for licencing details.
 */

/*
 * TTBD:
 *
#ifdef PRIVATE
 * Would be good to have a safe C string library availble, to simplify
 * string handling.
 * See mgs/casting/str.hpp and sds library.
#endif
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <float.h>
#include <math.h>

#ifdef NT
# include <basetsd.h>		/* So jpg header doesn't define INT32 */
# if !defined(WINVER) || WINVER < 0x0501
#  if defined(WINVER) 
#   undef WINVER
#  endif
#  define WINVER 0x0501
# endif
# if !defined(_WIN32_WINNT) || _WIN32_WINNT < 0x0501
#  if defined(_WIN32_WINNT) 
#   undef _WIN32_WINNT
#  endif
#  define _WIN32_WINNT 0x0501
# endif
# define WIN32_LEAN_AND_MEAN
# include <windows.h>
#endif

#ifdef UNIX
# include <pthread.h>
#endif

#ifdef __cplusplus
	extern "C" {
#endif

#ifndef PATH_MAX
# define PATH_MAX 4096
#endif

/* =========================================================== */
/* Platform specific primitive defines. */
/* This really needs checking for each different platform. */
/* Using C99 and MSC covers a lot of cases, */
/* and the fallback default is pretty reliable with modern compilers and machines. */
/* Note that MSWin is LLP64 == 32 bit long, while OS X/Linux is LP64 == 64 bit long, */
/* (and this doesn't change with the CPU target being 32 or 64 bit) */
/* so long shouldn't really be used in any code.... */
/* (duplicated in icc.h) */ 

/* Use __P64__ as cross platform 64 bit pointer #define */
#if defined(__LP64__) || defined(__ILP64__) || defined(__LLP64__) || defined(_WIN64)
# define __P64__ 1
#endif

#ifndef ORD32

#if (__STDC_VERSION__ >= 199901L)	/* C99 */		\
 || defined(_STDINT_H_) || defined(_STDINT_H)		\
 || defined(_SYS_TYPES_H)

#include <stdint.h> 

#define INR8   int8_t		/* 8 bit signed */
#define INR16  int16_t		/* 16 bit signed */
#define INR32  int32_t		/* 32 bit signed */
#define INR64  int64_t		/* 64 bit signed */
#define ORD8   uint8_t		/* 8 bit unsigned */
#define ORD16  uint16_t		/* 16 bit unsigned */
#define ORD32  uint32_t		/* 32 bit unsigned */
#define ORD64  uint64_t		/* 64 bit unsigned */

#define IPNTR intptr_t		/* Integer that can hold a pointer */

#define PFSTPREC "z"		/* size_t printf format precision specifier (ie %zu) */

#define PF64PREC "ll"		/* 64 bit printf format precision specifier */
#define CF64PREC(NNN) NNN##LL		/* 64 bit Constant precision specifier */

#ifndef ATTRIBUTE_NORETURN
# ifdef _MSC_VER
#  define ATTRIBUTE_NORETURN __declspec(noreturn)
# else
#  define ATTRIBUTE_NORETURN __attribute__((noreturn))
# endif
#endif

#ifndef INLINE
# ifdef _MSC_VER
#  define INLINE __inline
# else
#  define INLINE inline
# endif
#endif

#else  /* !__STDC_VERSION__ */

#ifdef _MSC_VER

#define INR8   __int8				/* 8 bit signed */
#define INR16  __int16				/* 16 bit signed */
#define INR32  __int32				/* 32 bit signed */
#define INR64  __int64				/* 64 bit signed */
#define ORD8   unsigned __int8		/* 8 bit unsigned */
#define ORD16  unsigned __int16		/* 16 bit unsigned */
#define ORD32  unsigned __int32		/* 32 bit unsigned */
#define ORD64  unsigned __int64		/* 64 bit unsigned */

#define IPNTR UINT_PTR				/* Integer that can hold a pointer */

#define PFSTPREC "I"				/* size_t printf format precision specifier (ie %Iu) */

#define PF64PREC "I64"				/* 64 bit printf format precision specifier */
#define CF64PREC(NNN) NNN##i64		/* 64 bit Constant precision specifier */

#define vsnprintf _vsnprintf
#define snprintf _snprintf

#ifndef ATTRIBUTE_NORETURN
# define ATTRIBUTE_NORETURN __declspec(noreturn)
#endif

#ifndef INLINE
# define INLINE __inline
#endif

#else  /* !_MSC_VER */

/* The following works on a lot of modern systems, including */
/* LLP64 and LP64 models, but won't work with ILP64 which needs int32 */

#define INR8   signed char			/* 8 bit signed */
#define INR16  signed short			/* 16 bit signed */
#define INR32  signed int			/* 32 bit signed */
#define ORD8   unsigned char		/* 8 bit unsigned */
#define ORD16  unsigned short		/* 16 bit unsigned */
#define ORD32  unsigned int			/* 32 bit unsigned */

#define PFSTPREC "l"				/* size_t printf format precision specifier (ie %lu) */

#ifdef __GNUC__
# ifdef __LP64__					/* long long could be 128 bit ? */
#  define INR64  long				/* 64 bit signed */
#  define ORD64  unsigned long		/* 64 bit unsigned */
#  define PF64PREC "l"				/* 64 bit printf format precision specifier */
#  define CF64PREC(NNN) NNN##L		/* 64 bit Constant precision specifier */
# else
#  define INR64  long long			/* 64 bit signed */
#  define ORD64  unsigned long long	/* 64 bit unsigned */
#  define PF64PREC "ll"				/* 64 bit printf format precision specifier */
#  define CF64PREC(NNN) NNN##LL		/* 64 bit Constant precision specifier */
# endif /* !__LP64__ */
#endif /* __GNUC__ */

#define IPNTR unsigned long 	/* Integer that can hold a pointer */

#ifndef ATTRIBUTE_NORETURN
# define ATTRIBUTE_NORETURN __attribute__((noreturn))
#endif

#ifndef INLINE
#  define INLINE inline
#endif /* INLINE */

#endif /* !_MSC_VER */
#endif /* !__STDC_VERSION__ */
#endif /* !ORD32 */

/* =========================================================== */
/* System compatibility #defines */
#if defined (NT)

#ifndef sys_stat
# define sys_stat _stat
#endif
#ifndef sys_mkdir
# define sys_mkdir _mkdir
#endif
#ifndef sys_read
# define sys_read _read
#endif
#ifndef sys_utime
# define sys_utime _utime
# define sys_utimbuf _utimbuf
#endif
#ifndef sys_access
# define sys_access _access
#endif

#ifndef snprintf
# define snprintf _snprintf
# define vsnprintf _vsnprintf
#endif
#ifndef stricmp
# define stricmp _stricmp
#endif

#ifndef alloca
# define alloca _alloca
#endif

#endif	/* NT */

#if defined (UNIX)

#ifndef sys_stat
# define sys_stat stat
#endif
#ifndef sys_mkdir
# define sys_mkdir mkdir
#endif
#ifndef sys_read
# define sys_read read
#endif
#ifndef sys_utime
# define sys_utime utime
# define sys_utimbuf utimbuf
#endif
#ifndef sys_access
# define sys_access access
#endif

#ifndef stricmp
# define stricmp strcasecmp
#endif

#endif	/* UNIX */

/* =========================================================== */
/* Some default math limits and constants */
#ifndef DBL_EPSILON
#define DBL_EPSILON     2.2204460492503131e-016		/* 1.0+DBL_EPSILON != 1.0 */
#endif
#ifndef DBL_MIN
#define DBL_MIN         2.2250738585072014e-308		/* IEEE 64 bit min value */
#endif
#ifndef DBL_MAX
#define DBL_MAX         1.7976931348623158e+308		/* IEEE 64 bit max value */
#endif
#ifndef DBL_PI
#define DBL_PI         3.1415926535897932384626433832795
#endif
#ifndef DBL_E
#define DBL_E          2.7182818284590452353602874713526
#endif

/*

	INT_MIN
	INT_MAX


*/

/* =========================================================== */
/* General verbose, debug, warning and error logging object and functions */

/* 

	Verbose is simply informational for the end user during normal
	operation, typically on stdout or in a text information log.
	This will be logged to the verbose log stream.  Level:

	 0   = Off
	 1   = Brief progress and informational messages
	 2   = Much more verbose information
	 3+  = Very verbose detail

	Debug output is for the developer, to trace what has happened so
	as to help diagnose a fault. This will be logged to the debug log stream.
	Level:

	 0   = Off
	 1   = Brief debug info and any internal errors that may be significant
	       if something subsequently fails.
	 1-5 = Application internals at increasing level of detail
	 2-6 = Driver level.(overlaps app & coms)
	 6-7 = high level communications
	 8   = low level communications.
	 9   = low level communications including polling threads.
	
	Warning is a serious internal fault that is going to be ignored at the
	point it is noticed, but may explain any unexpected behaviour.
	It will be reported to the vebose, debug and error log streams.

	An error is something that is regarded as fatal at the point it
	is noticed. It will be reported to the vebose, debug and error log
	streams. The error code and error message will be latched within the
	log object if it is the first error logged. It can (theoretically) be
	treated as a warning at a higher calling level by calling
	a1logue (unlatch error) to reset the error code and message.

 */

#define A1_LOG_BUFSIZE 500


struct _a1log {
	int refc;					/* Reference count */
	char *tag;					/* Optional tag name */
	int verb;					/* Current verbosity level (public) */
	int debug;					/* Current debug level (public) */

	void *cntx;					/* Context to provide to log functions */
	void (*logv)(void *cntx, struct _a1log *p, char *fmt, va_list args);
								/* Implementation of log verbose */
	void (*logd)(void *cntx, struct _a1log *p, char *fmt, va_list args);
								/* Implementation of log debug */
	void (*loge)(void *cntx, struct _a1log *p, char *fmt, va_list args);
								/* Implementation of log warning/error */

	int errc; 					/* error code */
	char errm[A1_LOG_BUFSIZE];	/* error message (public) */

#ifdef NT
	CRITICAL_SECTION lock;
#endif
#ifdef UNIX
	pthread_mutex_t lock;
#endif
}; typedef struct _a1log a1log;
	
	

/* If log NULL, allocate a new log and return it, */
/* otherwise increment reference count and return existing log, */
/* exit() if malloc fails. */
a1log *new_a1log(
	a1log *log,						/* Existing log to reference, NULL if none */
	int verb,						/* Verbose level to set */
	int debug,						/* Debug level to set */
	void *cntx,						/* Function context value */
	/* Debug log function to call - stdout if NULL */
	void (*logv)(void *cntx, a1log *p, char *fmt, va_list args),
	/* Debug log function to call - stderr if NULL */
	void (*logd)(void *cntx, a1log *p, char *fmt, va_list args),
	/* Warning/error Log function to call - stderr if NULL */
	void (*loge)(void *cntx, a1log *p, char *fmt, va_list args)
);

/* Same as above but set default functions */
a1log *new_a1log_d(a1log *log);

/* Decrement reference count and free log. */
/* Returns NULL */
a1log *del_a1log(a1log *log);

/* Set the debug logging level. */
void a1log_debug(a1log *log, int level);

/* Set the vebosity level. */
void a1log_verb(a1log *log, int level);

/* Set the tag. Note that the tag string is NOT copied, just referenced */
void a1log_tag(a1log *log, char *tag);

/* Log a verbose message if level >= verb */
void a1logv(a1log *log, int level, char *fmt, ...);

/* Log a debug message if level >= debug */
void a1logd(a1log *log, int level, char *fmt, ...);

/* log a warning message to the error output  */
void a1logw(a1log *log, char *fmt, ...);

/* log an error message,  */
/* ecode = system, icoms or instrument error */
void a1loge(a1log *log, int ecode, char *fmt, ...);

/* Unlatch an error message. */
/* This resets errc and errm */
void a1logue(a1log *log);

/* Print bytes as hex to FILE */
/* base is the base of the displayed offset */
void dump_bytes(FILE *fp, char *pfx, unsigned char *buf, int base, int len);

/* Print bytes as hex to debug log */
/* base is the base of the displayed offset */
void adump_bytes(a1log *log, char *pfx, unsigned char *buf, int base, int len);

/* =========================================================== */
/* Globals used to hold certain information */
extern char *exe_path;		/* Path leading to executable, not including exe name itself. */
							/* Always uses '/' separator */
							/* Malloce'd - won't be freed on exit (intended leak) */
						
extern a1log *g_log;		/* Default log */

/* These legacy functions that now call through to the default log */
#define error_program g_log->tag
extern void set_exe_path(char *arg0);

extern void ATTRIBUTE_NORETURN error(char *fmt, ...);
extern void warning(char *fmt, ...);
extern void verbose(int level, char *fmt, ...);

extern int ret_null_on_malloc_fail;

extern void check_if_not_interactive();
extern void do_fflush();
extern int not_interactive;
#ifdef NT
extern DWORD stdin_type;			/* FILE_TYPE_CHAR, FILE_TYPE_PIPE or assume file */ 
#endif

extern char cr_char;
extern char *fl_end;

/* =========================================================== */


/* =========================================================== */

/* reallocate and clear new allocation */
void *recalloc(		/* Return new address */
void *ptr,			/* Current address */
size_t cnum,		/* Current number and unit size */
size_t csize,
size_t nnum,		/* New number and unit size */
size_t nsize
); 

/* =========================================================== */

#if defined(__APPLE__)

/* Get the OS X version number. */
/* Return maj + min/100.0 + bugfix/10000.0 */
/* (Returns 0.0 if unable to get version */
double osx_get_version();

/* Get text OS X verion number, i.e. "10.3.1" */
char *osx_get_version_str();

/* Tell App Nap that this is user initiated */
void osx_userinitiated_start();

/* Done with user initiated */
void osx_userinitiated_end();

/* Tell App Nap that this is latency critical */
void osx_latencycritical_start();

/* Done with latency critical */
void osx_latencycritical_end();

#endif	/* __APPLE__ */

/* =========================================================== */

/* Numerical recipes vector/matrix support functions */
/* Note that the index arguments are the inclusive low and high values */

/* Double Vector */
double *dvector(int nl,int nh);
double *dvectorz(int nl,int nh);
void free_dvector(double *v,int nl,int nh);
// Macro: dvectora(doubld *ret, int nl,int nh);


/* Double Matrix */
double **dmatrix(int nrl, int nrh, int ncl, int nch);
double **dmatrixz(int nrl, int nrh, int ncl, int nch);
void free_dmatrix(double **m, int nrl, int nrh, int ncl, int nch);
void dmatrix_reset(double **m, int nrl, int nrh, int ncl, int nch);
// Macro: dmatrixa(double **ret, int nrl, int nrh, int ncl, int nch);

/* Half Matrix */
double **dhmatrix(int nrl, int nrh, int ncl, int nch);
double **dhmatrixz(int nrl, int nrh, int ncl, int nch);
void free_dhmatrix(double **m, int nrl, int nrh, int ncl, int nch);

void copy_dmatrix(double **dst, double **src, int nrl, int nrh, int ncl, int nch);
void copy_dmatrix_to3x3(double dst[3][3], double **src, int nrl, int nrh, int ncl, int nch);

/* Convert from C matrix to matrix */
double **convert_dmatrix(double *a,int nrl,int nrh,int ncl,int nch);
void free_convert_dmatrix(double **m,int nrl,int nrh,int ncl,int nch);


/* Float */
float *fvector(int nl,int nh);
float *fvectorz(int nl,int nh);
void free_fvector(float *v,int nl,int nh);

float **fmatrix(int nrl, int nrh, int ncl, int nch);
float **fmatrixz(int nrl, int nrh, int ncl, int nch);
void free_fmatrix(float **m, int nrl, int nrh, int ncl, int nch);


/* Int */
int *ivector(int nl,int nh);
int *ivectorz(int nl,int nh);
void free_ivector(int *v,int nl,int nh);

int **imatrix(int nrl,int nrh,int ncl,int nch);
int **imatrixz(int nrl,int nrh,int ncl,int nch);
void free_imatrix(int **m,int nrl,int nrh,int ncl,int nch);


/* Short */
short *svector(int nl, int nh);
short *svectorz(int nl, int nh);
void free_svector(short *v, int nl, int nh);

short **smatrix(int nrl,int nrh,int ncl,int nch);
short **smatrixz(int nrl,int nrh,int ncl,int nch);
void free_smatrix(short **m,int nrl,int nrh,int ncl,int nch);

/* ----------------------------------------------------------- */
/* Basic matrix operations */

/* Transpose a 0 base matrix */
void matrix_trans(double **d, double **s, int nr,  int nc);

/* Transpose a 0 base symetrical matrix in place */
void sym_matrix_trans(double **m, int n);

/* Matrix multiply 0 based matricies together */
int matrix_mult(
	double **d,  int nr,  int nc,
	double **s1, int nr1, int nc1,
	double **s2, int nr2, int nc2
);

/* Matrix multiply transpose of s1 by s2 */
/* 0 based matricies,  */
/* This is usefull for using results of lu_invert() */
int matrix_trans_mult(
	double **d,  int nr,  int nc,
	double **ts1, int nr1, int nc1,
	double **s2, int nr2, int nc2
);

/* Matrix multiply s1 by transpose of s2 */
/* 0 based matricies,  */
int matrix_mult_trans(
	double **d,  int nr,  int nc,
	double **s1, int nr1, int nc1,
	double **ts2, int nr2, int nc2
);

/* Multiply a 0 based matrix by a vector */
/* d may be same as v */
int matrix_vect_mult(
	double *d, int nd,
	double **m, int nr, int nc,
	double *v, int nv
);

/* Multiply a 0 based transposed matrix by a vector */
/* d may be same as v */
int matrix_trans_vect_mult(
	double *d, int nd,
	double **m, int nr, int nc,
	double *v, int nv
);

/* Add 0 based matricies */
void matrix_add(double **d,  double **s1, double **s2, int nr,  int nc);

/* Add scaled 0 based matricies */
void matrix_scaled_add(double **d,  double **s1, double scale, double **s2, int nr,  int nc);

/* Copy a 0 base matrix */
void matrix_cpy(double **d, double **s, int nr,  int nc);

/* Set a 0 base matrix */
void matrix_set(double **d, double v, int nr,  int nc);

/* Return the maximum absolute difference between any corresponding elemnt */
double matrix_max_diff(double **d, double **s, int nr,  int nc);


/* Set zero based dvector */
void vect_set(double *d, double v, int len);

/* Set random dvector */
/* See rand.h */
/* void vect_rand(double *d, double min, double max, int len); */

/* Copy zero based dvector */
#define vect_cpy(dd, ss, len) memmove((char *)(dd), (char *)(ss), (len) * sizeof(double))

/* Negate and copy a vector, d = -v */
/* d may be same as v */
void vect_neg(double *d, double *s, int len);

/* Add two vectors, d += v */
/* d may be same as v */
void vect_add(double *d, double *v, int len);

/* Add two vectors, d = s1 + s2 */
void vect_add3(double *d, double *s1, double *s2, int len);

/* Subtract two vectors, d -= v */
/* d may be same as v */
void vect_sub(double *d, double *v, int len);

/* Subtract two vectors, d =  s1 - s2 */
void vect_sub3(double *d, double *s1, double *s2, int len);

/* Invert and copy a vector, d = 1/s */
void vect_invert(double *d, double *s, int len);

/* Multiply the dest by the vector, d *= s */
void vect_mul(double *d, double *s, int len);

/* Multiply the elements of two vectors, d = s1 * s2 */
void vect_mul3(double *d, double *s1, double *s2, int len);

/* Divide the destination by the source, d /= s */
void vect_div(double *d, double *s, int len);

/* Divide the elements of two vectors, d = s1 / s2 */
void vect_div3(double *d, double *s1, double *s2, int len);

/* Divide the elements of two vectors, d = s1 / s2 */
/* Return 1.0 if s2 < 1e-6 */
void vect_div3_safe(double *d, double *s1, double *s2, int len);

/* Multiply and divide, d *= s1 / s2 */
void vect_muldiv(double *d, double *s1, double *s2, int len);

/* Multiply and divide, d *= s1 / s2 */
/* Don't change d if s2 < 1e-6 */
void vect_muldiv_safe(double *d, double *s1, double *s2, int len);

/* Multiply and divide, d = s1 * s2 / s3 */
void vect_muldiv3(double *d, double *s1, double *s2, double *s3, int len);

/* Return the maximum elements from two vectors */
void vect_max_elem(double *d, double *s, int len);

/* Return the maximum elements from two vectors */
void vect_max_elem3(double *d, double *s1, double *s2, int len);

/* Blend between s0 and s1 for bl 0..1 */
/* i.e. d = (1 - bl) * s0 + bl * s1 */
void vect_blend(double *d, double *s0, double *s1, double bl, int len);

/* Scale a vector, */
/* d may be same as 2 */
void vect_scale(double *d, double *s, double scale, int len);

/* 1 argument scale a vector, */
void vect_scale1(double *d, double scale, int len);

/* Scale s and add to d */
void vect_scaleadd(double *d, double *s, double scale, int len);

/* Take dot product of two vectors */
double vect_dot(double *s1, double *s2, int len);

/* Return the vectors magnitude (norm) */
double vect_mag(double *s, int len);

/* Return the vectors magnitude squared (norm squared) */
double vect_magsq(double *s, int len);

/* Return the magnitude (norm) of the difference between two vectors */
double vect_diffmag(double *s1, double *s2, int len);

/* Return the sum of the vectors elements */
double vect_sum(double *s, int len);

/* Return the average value of the elements of a vector */
double vect_avg(double *s1, int len);

/* Return the normalized vectors */
/* Return nz if norm is zero */
int vect_normalize(double *d, double *s, int len);

/* Return the vectors elements maximum absolute magnitude */
double vect_max_mag(double *s, int len);

/* Return the vectors elements maximum value */
double vect_max(double *s, int len);

/* Return the elements maximum value from two vectors */
double vect_max2(double *s1, int len1, double *s2, int len2);

/* Return the maximum value difference between two vectors */
double vect_diffmax(double *s1, double *s2, int len);

/* Return the vectors elements minimum value */
double vect_min(double *s, int len);

/* Take absolute of each element */
void vect_abs(double *d, double *s, int len);

/* Take individual elements to signed power */
void vect_spow(double *d, double *s, double pv, int len);

/* Clip to a range */
/* Return NZ if any clipping occured */
/* d may be null */
int vect_clip(double *d, double *s, double min, double max, int len);

/* Compare two vectors and return nz if they are the same */
int vect_cmp(double *s1, double *s2, int len);



/* Linearly search a vector from 0 for a given value. */
/* The must be ordered from smallest to largest. */
/* The returned index is p[ix] <= val < p[ix+1] */
/* Clip to the range of the vector 0..len-1 */
int vect_lsearch(double *p, double in, int len);

/* Binary search a vector from 0 for a given value. */
/* The must be ordered from smallest to largest. */
/* The returned index is p[ix] <= val < p[ix+1] */
/* Clip to the range of the vector 0..len-1 */
int vect_bsearch(double *p, double in, int len);


/* Do a linear interpolation into a vector */
/* Input 0.0 .. 1.0, clips result if outside that range */
double vect_lerp(double *s, double in, int len);

/* Do a reverse linear interpolation into a vector. */
/* This uses a simple search for the given value, */
/* and so will return the reverse interpolation of the */
/* matching span with the smallest index value. */ 
/* Output 0.0 .. 1.0, clips result if outside that range to the */
/* closest index. */
double vect_rev_lerp(double *s, double in, int len);


/* Do a linear interpolation into a vector pair, position->value. */
/* It is assumed that p[] is in sorted smallest to largest order, */
/* and that the entries are distinct. */
/* If input is outside range of p[], then the returned value will be */
/* linearly extrapolated. */
double vect_lerp2x(double *p, double *v, double in, int len);

/* Same as above, but clip rather than extrapolating. */
double vect_lerp2(double *p, double *v, double in, int len);

/* Copy zero based ivector */
#define ivect_cpy(dd, ss, len) memmove((char *)(dd), (char *)(ss), (len) * sizeof(int))

/* Set zero based ivector */
void ivect_set(int *d, int v, int len);


/* Diagnostics */
/* id identifies matrix/vector */
/* pfx used at start of each line */
/* Assumed indexed from 0 */

void dump_dmatrix(FILE *fp, char *id, char *pfx, double **a, int nr, int nc);
void dump_fmatrix(FILE *fp, char *id, char *pfx, float **a, int nr, int nc);
void dump_imatrix(FILE *fp, char *id, char *pfx, int **a, int nr, int nc);
void dump_smatrix(FILE *fp, char *id, char *pfx, short **a, int nr, int nc);

void dump_dvector(FILE *fp, char *id, char *pfx, double *a, int nc);
void dump_fvector(FILE *fp, char *id, char *pfx, float *a, int nc);
void dump_ivector(FILE *fp, char *id, char *pfx, int *a, int nc);
void dump_svector(FILE *fp, char *id, char *pfx, short *a, int nc);

void dump_dmatrix_fmt(FILE *fp, char *id, char *pfx, double **a, int nr, int nc, char *fmt);
void dump_dvector_fmt(FILE *fp, char *id, char *pfx, double *a, int nc, char *fmt);


void adump_dmatrix(a1log *log, char *id, char *pfx, double **a, int nr, int nc);
void adump_fmatrix(a1log *log, char *id, char *pfx, float **a, int nr, int nc);
void adump_imatrix(a1log *log, char *id, char *pfx, int **a, int nr, int nc);
void adump_smatrix(a1log *log, char *id, char *pfx, short **a, int nr, int nc);

void adump_dvector(a1log *log, char *id, char *pfx, double *a, int nc);
void adump_fvector(a1log *log, char *id, char *pfx, float *a, int nc);
void adump_ivector(a1log *log, char *id, char *pfx, int *a, int nc);
void adump_svector(a1log *log, char *id, char *pfx, short *a, int nc);

void adump_dmatrix_fmt(a1log *log, char *id, char *pfx, double **a, int nr, int nc, char *fmt);
void adump_dvector_fmt(a1log *log, char *id, char *pfx, double *a, int nc, char *fmt);

/* Dump C type matrix */
void adump_C_dmatrix(a1log *log, char *id, char *pfx, double *a, int nr,  int nc);

/* ===================================================== */
/* C matrix support */

/* Clip a vector to the range 0.0 .. 1.0 */
/* and return any clipping margine */
double vect_ClipNmarg(int n, double *out, double *in);

/* Multiply N vector by NxN transform matrix */
/* Organization is mat[out][in] */
void vect_MulByNxN(int n, double *out, double *mat, double *in);

/* Multiply N vector by MxN transform matrix */
/* Organization is mat[out][in] */
void vect_MulByMxN(int n, int m, double *out, double *mat, double *in);

/* Multiply N vector by transposed NxM transform matrix */
/* Organization is mat[in][out] */
void vect_MulByNxM(int n, int m, double *out, double *mat, double *in);

/* Transpose an NxN matrix */
void matrix_TransposeNxN(int n, double *out, double *in);

/* Dump out matrix/vector as a C array to FILE */
/* id is the variable name */
/* pfx used at start of each line */
/* hb sets horizontal element limit to wrap */
/* Assumed indexed from 0 */

void acode_dmatrix(FILE *fp, char *id, char *pfx, double **a, int nr,  int nc, int hb);

void acode_dvector(FILE *fp, char *id, char *pfx, double *v, int nc, int hb);

/* =========================================================== */

/* Cast a native double to an IEEE754 encoded single precision value, */
/* in a platform independent fashion. */
ORD32 doubletoIEEE754(double d);

/* Cast an IEEE754 encoded single precision value to a native double, */
/* in a platform independent fashion. */
double IEEE754todouble(ORD32 ip);


/* Cast a native double to an IEEE754 encoded double precision value, */
/* in a platform independent fashion. */
ORD64 doubletoIEEE754_64(double d);

/* Cast an IEEE754 encoded double precision value to a native double, */
/* in a platform independent fashion. */
double IEEE754_64todouble(ORD64 ip);


/* Return a string representation of a 32 bit ctime. */
/* A static buffer is used. There is no \n at the end */
char *ctime_32(const INR32 *timer);

/* Return a string representation of a 64 bit ctime. */
/* A static buffer is used. There is no \n at the end */
char *ctime_64(const INR64 *timer);

/*******************************************/
/* Native to/from byte buffer functions    */
/*******************************************/

/* No overflow detection is done - numbers are clipped */

/* be = Big Endian */
/* le = Little Endian */

/* Unsigned 8 bit */
unsigned int read_ORD8(ORD8 *p);
void write_ORD8(ORD8 *p, unsigned int d);

/* Signed 8 bit */
int read_INR8(ORD8 *p);
void write_INR8(ORD8 *p, int d);


/* Unsigned 16 bit */
unsigned int read_ORD16_be(ORD8 *p);
unsigned int read_ORD16_le(ORD8 *p);
void write_ORD16_be(ORD8 *p, unsigned int d);
void write_ORD16_le(ORD8 *p, unsigned int d);

/* Signed 16 bit */
int read_INR16_be(ORD8 *p);
int read_INR16_le(ORD8 *p);
void write_INR16_be(ORD8 *p, int d);
void write_INR16_le(ORD8 *p, int d);


/* Unsigned 32 bit */
unsigned int read_ORD32_be(ORD8 *p);
unsigned int read_ORD32_le(ORD8 *p);
void write_ORD32_be(ORD8 *p, unsigned int d);
void write_ORD32_le(ORD8 *p, unsigned int d);

/* Signed 32 bit */
int read_INR32_be(ORD8 *p);
int read_INR32_le(ORD8 *p);
void write_INR32_be(ORD8 *p, int d);
void write_INR32_le(ORD8 *p, int d);


/* Unsigned 64 bit */
ORD64 read_ORD64_be(ORD8 *p);
ORD64 read_ORD64_le(ORD8 *p);
void write_ORD64_be(ORD8 *p, ORD64 d);
void write_ORD64_le(ORD8 *p, ORD64 d);

/* Signed 64 bit */
INR64 read_INR64_be(ORD8 *p);
INR64 read_INR64_le(ORD8 *p);
void write_INR64_be(ORD8 *p, INR64 d);
void write_INR64_le(ORD8 *p, INR64 d);


/* IEEE 32 bit float */
double read_FLT32_be(ORD8 *p);
double read_FLT32_le(ORD8 *p);
void write_FLT32_be(ORD8 *p, double d);
void write_FLT32_le(ORD8 *p, double d);

/* IEEE 64 bit float */
double read_FLT64_be(ORD8 *p);
double read_FLT64_le(ORD8 *p);
void write_FLT64_be(ORD8 *p, double d);
void write_FLT64_le(ORD8 *p, double d);

/*******************************************/
/* Some bit functions */

/* Return number of set bits */
int count_set_bits(unsigned int val);

/*******************************************/

/* Sleep for the given number of msec */
void msec_sleep(unsigned int msec);

/* Return the current time in msec since */
/* the first invokation of msec_time() */
unsigned int msec_time();

/* Return the current time in usec */
/* (The first invokation of usec_time() returns zero) */
double usec_time();

/*******************************************/
/* Debug convenience functions (duplicated in icc) */

/* Print an int vector to a string. */
/* Returned static buffer is re-used every 5 calls. */
char *debPiv(int di, int *p);

/* Print a double vector to a string. */
/* Returned static buffer is re-used every 5 calls. */
char *debPdv(int di, double *p);

/* Print a double vector to a string with format. */
/* Returned static buffer is re-used every 5 calls. */
char *debPdvf(int di, char *fmt, double *p);

/* Print a float vector to a string. */
/* Returned static buffer is re-used every 5 calls. */
char *debPfv(int di, float *p);


/*******************************************/
/* Numerical diagnostics */

#ifndef isNan
#define isNan(x) ((x) != (x))
#define isNFinite(x) ( isNan(x) || (x) < DBL_MIN || DBL_MAX < (x))
#define isFinite(x) (!isNFinite(x))
#endif

/*******************************************/
/* Dev. diagnostic logging to C:/Users/Public/log.txt */

extern FILE *a_diag_fp;
void a_diag_log(char *fmt, ...);

/*******************************************/
double gamma_func(double x);

/*******************************************/

/* Double Vector on stack */
#define dvectora(ret,		/* Variable to put result in */ \
nl,		/* Lowest index */ \
nh		/* Highest index */ \
)	{ \
	double *v; \
	int nl = Anl; \
	int nh = Anh; \
 \
	if ((v = (double *) alloca((nh-nl+1) * sizeof(double))) == NULL) { \
		if (ret_null_on_malloc_fail) { \
			(ret) = NUL; \
			goto done; \
		} else \
			error("Alloca failure in dvector()"); \
	} \
	(ret) = v-nl; \
  done:; \
}

/* 2D Double matrix on stack */
#define dmatrixa(ret,		/* Variable to put result in */ \
Anrl,	/* Row low index */ \
Anrh,	/* Row high index */ \
Ancl,	/* Col low index */ \
Anch	/* Col high index */ \
) { \
	int i; \
	int rows, cols; \
	double **m; \
	int nrl = Anrl; \
	int nrh = Anrh; \
	int ncl = Ancl; \
	int nch = Anch; \
 \
	if (nrh < nrl)	/* Prevent failure for 0 dimension */ \
		nrh = nrl; \
	if (nch < ncl) \
		nch = ncl; \
 \
	rows = nrh - nrl + 1; \
	cols = nch - ncl + 1; \
 \
	/* One extra pointer before colums to hold main allocation address */ \
	if ((m = (double **) alloca((rows + 1) * sizeof(double *))) == NULL) { \
		if (ret_null_on_malloc_fail) { \
			(ret) = NULL; \
			goto done; \
		} else \
			error("Alloca failure in dmatrix(), pointers"); \
	} \
	m -= nrl;	/* Offset to nrl */ \
	m += 1;		/* Make nrl-1 pointer to main allocation, in case rows get swaped */ \
 \
	if ((m[nrl-1] = (double *) alloca(rows * cols * sizeof(double))) == NULL) { \
		if (ret_null_on_malloc_fail) { \
			(ret) = NULL; \
			goto done; \
		} else \
			error("Alloca failure in dmatrix(), array"); \
	} \
 \
	m[nrl] = m[nrl-1] - ncl;		/* Set first row address, offset to ncl */ \
	for(i = nrl+1; i <= nrh; i++)	/* Set subsequent row addresses */ \
		m[i] = m[i-1] + cols; \
 \
	(ret) = m; \
  done:; \
}

#ifdef __cplusplus
	}
#endif

#define NUMSUP_H
#endif /* NUMSUP_H */