1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
|
/* Multi-dimentional minizer using Powell or Conjugate Gradient methods */
/* This is good for smoother, well behaved functions. */
/* Code is an original expression of the algorithms decsribed in */
/* "Numerical Recipes in C", by W.H.Press, B.P.Flannery, */
/* S.A.Teukolsky & W.T.Vetterling. */
/*
* Copyright 2000, 2006 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
/* TTBD:
Fix error handling to return status (malloc, excessive itters)
Create to "safe" library ?
Make standalone - ie remove numsup ?
*/
/*
Idea for improving progress accounting:
count number of itterations already done (pitter)
estimate number yet needed (fitter)
progress = pitter/(pitter + fitter)
Number yet needed estimated by progress of retval delta
againsth threshold target.
ie fitters = (lastdel - curdel)/(curdel - stopth)
*/
/* Note that all arrays are indexed from 0 */
#include "numsup.h"
#include "powell.h"
#undef SLOPE_SANITY_CHECK /* [und] expermental */
#undef ABSTOL /* [und] Make tollerance absolute */
#undef USE_LINMIND /* [und] Use limind for conjgrad (typically slower) */
/* Some debugging printfs (not comprehensive): */
#undef PDEBUG /* Powell debug */
#undef CDEBUG /* Conjgrad debug */
#undef LDEBUG /* Line min debug */
#if defined(PDEBUG)
# undef PDBG
# define PDBG(xxx) printf xxx ;
#else
# undef PDBG
# define PDBG(xxx)
#endif
#if defined(CDEBUG)
# undef CDBG
# define CDBG(xxx) printf xxx ;
#else
# undef CDBG
# define CDBG(xxx)
#endif
#if defined(LDEBUG)
# undef LDBG
# define LDBG(xxx) printf xxx ;
#else
# undef LDBG
# define LDBG(xxx)
#endif
/* -------------------------------------- */
/* Standard interface for powell function */
/* return 0 on sucess, 1 on failure due to excessive itterions */
/* Result will be in cp */
int powell(
double *rv, /* If not NULL, return the residual error */
int di, /* Dimentionality */
double cp[], /* Initial starting point */
double s[], /* Size of initial search area */
#ifdef ABSTOL
double ftol, /* Absolute tollerance of error change to stop on */
#else
double ftol, /* Relative tollerance of error change to stop on */
#endif
int maxit, /* Maximum iterations allowed */
double (*func)(void *fdata, double tp[]), /* Error function to evaluate */
void *fdata, /* Opaque data needed by function */
void (*prog)(void *pdata, int perc), /* Optional progress percentage callback */
void *pdata /* Opaque data needed by prog() */
) {
int i;
double **dmtx, *_dmtx[10], __dmtx[10 * 10] = { 0.0 }; /* Direction vectors */
double *spt, _spt[10]; /* Sarting point before exploring all the directions */
double *xpt, _xpt[10]; /* Extrapolated point */
double *svec, _svec[10]; /* Search vector */
int iter;
double retv; /* Returned function value at p */
double stopth; /* Current stop threshold */
double startdel = -1.0; /* Initial change in function value */
double curdel; /* Current change in function value */
int pc = 0; /* Percentage complete */
if (di <= 10) {
int j;
for (j = i = 0; i < di; i++, j += di)
_dmtx[i] = __dmtx + j;
dmtx = _dmtx;
spt = _spt;
xpt = _xpt;
svec = _svec;
} else {
dmtx = dmatrixz(0, di-1, 0, di-1); /* Zero filled */
spt = dvector(0, di-1);
xpt = dvector(0, di-1);
svec = dvector(0, di-1);
}
/* Create initial direction matrix by */
/* placing search start on diagonal */
for (i = 0; i < di; i++)
dmtx[i][i] = s[i];
/* Save the starting point */
for (i = 0; i < di; i++)
spt[i] = cp[i];
if (prog != NULL) /* Report initial progress */
prog(pdata, pc);
/* Initial function evaluation */
retv = (*func)(fdata, cp);
//printf("~1 ### initial retv = %f\n",retv);
/* Itterate until we converge on a solution, or give up. */
for (iter = 1; iter < maxit; iter++) {
int j;
double lretv; /* Last function return value */
int ibig = 0; /* Index of biggest delta */
double del = 0.0; /* Biggest function value decrease */
double pretv; /* Previous function return value */
pretv = retv; /* Save return value at top of itteration */
/* Loop over all directions in the set */
for (i = 0; i < di; i++) {
PDBG(("Looping over direction %d\n",i))
for (j = 0; j < di; j++) /* Extract this direction to make search vector */
svec[j] = dmtx[j][i];
//printf("~1 ### chosen dir = %f %f\n", svec[0],svec[1]);
/* Minimize in that direction */
lretv = retv;
retv = linmin(cp, svec, di, ftol, func, fdata);
/* Record bigest function decrease, and direction it occured on */
if (fabs(lretv - retv) > del) {
del = fabs(lretv - retv);
ibig = i;
}
}
//printf("~1 ### biggest change was dir %d by %f\n", ibig, del);
#ifdef ABSTOL
stopth = ftol; /* Absolute tollerance */
#else
stopth = ftol * 0.5 * (fabs(pretv) + fabs(retv) + DBL_EPSILON);
#endif
curdel = fabs(pretv - retv);
if (startdel < 0.0) {
startdel = curdel;
} else {
int tt;
tt = (int)(100.0 * pow((log(curdel) - log(startdel))/(log(stopth) - log(startdel)), 4.0) + 0.5);
if (tt > pc && tt < 100) {
pc = tt;
if (prog != NULL) /* Report initial progress */
prog(pdata, pc);
}
}
/* If we have made at least one pass through all directions and */
/* reached a suitable tollerance, then finish */
if (iter > 1 && curdel <= stopth) {
//printf("~1 ### stopping on itter %d because curdel %f <= stopth %f\n",iter, curdel,stopth);
PDBG(("Reached stop tollerance because curdel %f <= stopth %f\n",curdel,stopth))
break;
}
PDBG(("Not stopping because curdel %f > stopth %f\n",curdel,stopth))
//printf("~1 ### recomputing direction\n");
/* Compute overall direction minimization moved in */
for (i = 0; i < di; i++) {
svec[i] = cp[i] - spt[i]; /* Average direction moved after minimization round */
xpt[i] = cp[i] + svec[i]; /* Extrapolated point after round of minimization */
spt[i] = cp[i]; /* New start point for next round */
}
//printf("~1 ### new dir = %f %f\n", svec[0],svec[1]);
/* Function value at extrapolated point in overall direction moved in */
lretv = (*func)(fdata, xpt);
if (lretv < pretv) { /* If extrapolation is an improvement */
double t, t1, t2;
//printf("~1 ### extrap is improvement\n");
t1 = pretv - retv - del;
t2 = pretv - lretv;
t = 2.0 * (pretv -2.0 * retv + lretv) * t1 * t1 - del * t2 * t2;
if (t < 0.0) {
//printf("~1 ### move to min in new direction\n");
/* Move to the minimum of the new direction */
retv = linmin(cp, svec, di, ftol, func, fdata);
for (i = 0; i < di; i++) { /* Save the new direction */
dmtx[i][ibig] = svec[i]; /* by replacing best previous */
}
}
}
} /* Continue itterating */
//printf("~1 iters = %d\n",iter);
/* Free up all the temporary vectors and matrix */
if (di > 10) {
free_dvector(svec, 0, di-1);
free_dvector(xpt, 0, di-1);
free_dvector(spt, 0, di-1);
free_dmatrix(dmtx, 0, di-1, 0, di-1);
}
if (prog != NULL) /* Report final progress */
prog(pdata, 100);
if (rv != NULL)
*rv = retv;
if (iter < maxit)
return 0;
PDBG(("powell: returning 1 due to excessive itterations\n"))
return 1; /* Failed due to execessive itterations */
}
/* - - - - - - - - - - - - - - - - - */
#define POWELL_GOLD 1.618034
#define POWELL_CGOLD 0.3819660
#define POWELL_MAXIT 100
/* Line bracketing and minimisation routine. */
/* Return value at minimum. */
double linmin(
double cp[], /* Start point, and returned value */
double xi[], /* Search vector */
int di, /* Dimensionality */
#ifdef ABSTOL
double ftol, /* Absolute tolerance to stop on */
#else
double ftol, /* Relative tolerance to stop on */
#endif
double (*func)(void *fdata, double tp[]), /* Error function to evaluate */
void *fdata) /* Opaque data for func() */
{
int i;
double ax, xx, bx; /* Search vector multipliers */
double af, xf, bf; /* Function values at those points */
double *xt, _xt[10]; /* Trial point */
if (di <= 10)
xt = _xt;
else
xt = dvector(0, di-1); /* Vector for trial point */
/* -------------------------- */
/* First bracket the solution */
LDBG((" linmin: Bracketing solution\n"))
/* The line is measured as startpoint + offset * search vector. */
/* (Search isn't symetric, but it seems to depend on cp being */
/* best current solution ?) */
ax = 0.0;
for (i = 0; i < di; i++)
xt[i] = cp[i] + ax * xi[i];
af = (*func)(fdata, xt);
/* xx being vector offset 0.618 */
xx = 1.0/POWELL_GOLD;
for (i = 0; i < di; i++)
xt[i] = cp[i] + xx * xi[i];
xf = (*func)(fdata, xt);
LDBG((" linmin: Initial points a:%f:%f -> b:%f:%f\n",ax,af,xx,xf))
/* Fix it so that we are decreasing from point a -> x */
if (xf > af) {
double tt;
tt = ax; ax = xx; xx = tt;
tt = af; af = xf; xf = tt;
}
LDBG((" linmin: Ordered Initial points a:%f:%f -> b:%f:%f\n",ax,af,xx,xf))
bx = xx + POWELL_GOLD * (xx-ax); /* Guess b beyond a -> x */
for (i = 0; i < di; i++)
xt[i] = cp[i] + bx * xi[i];
bf = (*func)(fdata, xt);
LDBG((" linmin: Initial bracket a:%f:%f x:%f:%f b:%f:%f\n",ax,af,xx,xf,bx,bf))
#ifdef SLOPE_SANITY_CHECK
/* If we're not seeing a slope indicitive of progress */
/* of order ftol, give up straight away */
if (2000.0 * fabs(xf - bf) <= ftol * (fabs(xf) + fabs(bf))
&& 2000.0 * fabs(af - xf) <= ftol * (fabs(af) + fabs(xf))) {
LDBG((" linmin: giving up because slope is too shallow\n"))
if (xt != _xt)
free_dvector(xt,0,di-1);
if (bf < xf) {
xf = bf;
xx = bx;
}
goto done;
}
#endif /* SLOPE_SANITY_CHECK */
/* While not bracketed */
while (xf > bf) {
double ulim, ux, uf;
double tt, r, q;
LDBG((" linmin: Not bracketed because xf %f > bf %f\n",xf, bf))
LDBG((" ax = %f, xx = %f, bx = %f\n",ax,xx,bx))
/* Compute ux by parabolic interpolation from a, x & b */
q = (xx - bx) * (xf - af);
r = (xx - ax) * (xf - bf);
tt = q - r;
if (tt >= 0.0 && tt < 1e-20) /* If +ve too small */
tt = 1e-20;
else if (tt <= 0.0 && tt > -1e-20) /* If -ve too small */
tt = -1e-20;
ux = xx - ((xx - bx) * q - (xx - ax) * r) / (2.0 * tt);
ulim = xx + 100.0 * (bx - xx); /* Extrapolation limit */
//printf("~1 ux = %f, ulim = %f\n",ux,ulim);
if ((xx - ux) * (ux - bx) > 0.0) { /* u is between x and b */
for (i = 0; i < di; i++) /* Evaluate u */
xt[i] = cp[i] + ux * xi[i];
uf = (*func)(fdata, xt);
//printf("~1 u is between x and b, uf = %f\n",uf);
if (uf < bf) { /* Minimum is between x and b */
//printf("~1 min is between x and b\n");
ax = xx; af = xf;
xx = ux; xf = uf;
break;
} else if (uf > xf) { /* Minimum is between a and u */
//printf("~1 min is between a and u\n");
bx = ux; bf = uf;
break;
}
/* Parabolic fit didn't work, look further out in direction of b */
ux = bx + POWELL_GOLD * (bx-xx);
//printf("~1 parabolic fit didn't work,look further in direction of b (%f)\n",ux);
} else if ((bx - ux) * (ux - ulim) > 0.0) { /* u is between b and limit */
for (i = 0; i < di; i++) /* Evaluate u */
xt[i] = cp[i] + ux * xi[i];
uf = (*func)(fdata, xt);
//printf("~1 u is between b and limit uf = %f\n",uf);
if (uf > bf) { /* Minimum is between x and u */
//printf("~1 min is between x and uf\n");
ax = xx; af = xf;
xx = bx; xf = bf;
bx = ux; bf = uf;
break;
}
xx = bx; xf = bf; /* Continue looking */
bx = ux; bf = uf;
ux = bx + POWELL_GOLD * (bx - xx); /* Test beyond b */
//printf("~1 continue looking beyond b (%f)\n",ux);
} else if ((ux - ulim) * (ulim - bx) >= 0.0) { /* u is beyond limit */
ux = ulim;
//printf("~1 use limit\n");
} else { /* u is to left side of x ? */
ux = bx + POWELL_GOLD * (bx-xx);
//printf("~1 look gold beyond b (%f)\n",ux);
}
/* Evaluate u, and move into place at b */
for (i = 0; i < di; i++)
xt[i] = cp[i] + ux * xi[i];
uf = (*func)(fdata, xt);
//printf("~1 lookup ux %f value uf = %f\n",ux,uf);
ax = xx; af = xf;
xx = bx; xf = bf;
bx = ux; bf = uf;
//printf("~1 move along to the right (a<-x, x<-b, b-<u)\n");
}
LDBG((" linmin: Got bracket a:%f:%f x:%f:%f b:%f:%f\n",ax,af,xx,xf,bx,bf))
/* Got bracketed minimum between a -> x -> b */
//printf("~1 got bracketed minimum at %f (%f), %f (%f), %f (%f)\n",ax,af,xx,xf,bx,bf);
/* --------------------------------------- */
/* Now use brent minimiser bewteen a and b */
{
/* a and b bracket solution */
/* x is best function value so far */
/* w is second best function value so far */
/* v is previous second best, or third best */
/* u is most recently tested point */
double wx, vx, ux; /* Search vector multipliers */
double wf, vf = 0.0, uf; /* Function values at those points */
int iter;
double de = 0.0; /* Distance moved on previous step */
double e = 0.0; /* Distance moved on 2nd previous step */
/* Make sure a and b are in ascending order */
if (ax > bx) {
double tt;
tt = ax; ax = bx; bx = tt;
tt = af; af = bf; bf = tt;
}
wx = vx = xx; /* Initial values of other center points */
wf = xf = xf;
for (iter = 1; iter <= POWELL_MAXIT; iter++) {
double mx = 0.5 * (ax + bx); /* m is center of bracket values */
#ifdef ABSTOL
double tol1 = ftol; /* Absolute tollerance */
#else
double tol1 = ftol * fabs(xx) + 1e-10;
#endif
double tol2 = 2.0 * tol1;
LDBG((" linmin it %d: Got bracket a:%f:%f x:%f:%f b:%f:%f\n",iter,ax,af,xx,xf,bx,bf))
/* See if we're done */
//printf("~1 linmin check %f <= %f\n",fabs(xx - mx), tol2 - 0.5 * (bx - ax));
if (fabs(xx - mx) <= (tol2 - 0.5 * (bx - ax))) {
LDBG((" linmin: We're done because %e <= %e\n",fabs(xx - mx), tol2 - 0.5 * (bx - ax)))
break;
}
LDBG((" linmin: e %e tol2 %e\n",e,tol1))
if (fabs(e) > tol1) { /* Do a trial parabolic fit */
double te, p, q, r;
r = (xx-wx) * (xf-vf);
q = (xx-vx) * (xf-wf);
p = (xx-vx) * q - (xx-wx) * r;
q = 2.0 * (q - r);
if (q > 0.0)
p = -p;
else
q = -q;
te = e; /* Save previous e value */
e = de; /* Previous steps distance moved */
LDBG((" linmin: Trial parabolic fit\n" ))
if (fabs(p) >= fabs(0.5 * q * te) || p <= q * (ax-xx) || p >= q * (bx-xx)) {
/* Give up on the parabolic fit, and use the golden section search */
e = ((xx >= mx) ? ax-xx : bx-xx); /* Override previous distance moved */
de = POWELL_CGOLD * e;
LDBG((" linmin: Moving to golden section search\n" ))
} else { /* Use parabolic fit */
de = p/q; /* Change in xb */
ux = xx + de; /* Trial point according to parabolic fit */
if ((ux - ax) < tol2 || (bx - ux) < tol2) {
if ((mx - xx) > 0.0) /* Don't use parabolic, use tol1 */
de = tol1; /* tol1 is +ve */
else
de = -tol1;
}
LDBG((" linmin: Using parabolic fit\n" ))
}
} else { /* Keep using the golden section search */
e = ((xx >= mx) ? ax-xx : bx-xx); /* Override previous distance moved */
de = POWELL_CGOLD * e;
LDBG((" linmin: Continuing golden section search\n" ))
}
if (fabs(de) >= tol1) { /* If de moves as much as tol1 would */
ux = xx + de; /* use it */
LDBG((" linmin: ux = %f = xx %f + de %f\n",ux,xx,de))
} else { /* else move by tol1 in direction de */
if (de > 0.0) {
ux = xx + tol1;
LDBG((" linmin: ux = %f = xx %f + tol1 %e\n",ux,xx,tol1))
} else {
ux = xx - tol1;
LDBG((" linmin: ux = %f = xx %f - tol1 %f\n",ux,xx,tol1))
}
}
/* Evaluate function */
for (i = 0; i < di; i++)
xt[i] = cp[i] + ux * xi[i];
uf = (*func)(fdata, xt);
if (uf <= xf) { /* Found new best solution */
LDBG((" linmin: found new best solution at %f val %f\n",ux,uf))
if (ux >= xx) {
ax = xx; af = xf; /* New lower bracket */
} else {
bx = xx; bf = xf; /* New upper bracket */
}
vx = wx; vf = wf; /* New previous 2nd best solution */
wx = xx; wf = xf; /* New 2nd best solution from previous best */
xx = ux; xf = uf; /* New best solution from latest */
} else { /* Found a worse solution */
LDBG((" linmin: found new worse solution at %f val %f\n",ux,uf))
LDBG((" linmin: current best at %f val %f\n",xx,xf))
if (ux < xx) {
ax = ux; af = uf; /* New lower bracket */
} else {
bx = ux; bf = uf; /* New upper bracket */
}
if (uf <= wf || wx == xx) { /* New 2nd best solution, or equal best */
vx = wx; vf = wf; /* New previous 2nd best solution */
wx = ux; wf = uf; /* New 2nd best from latest */
} else if (uf <= vf || vx == xx || vx == wx) { /* New 3rd best, or equal 1st & 2nd */
vx = ux; vf = uf; /* New previous 2nd best from latest */
}
}
}
/* !!! should do something if iter > POWELL_MAXIT !!!! */
/* Solution is at xx, xf */
}
done:;
/* Compute solution vector at xx */
LDBG((" linmin: computing soln from best at %f val %f\n",xx,xf))
for (i = 0; i < di; i++)
cp[i] += xx * xi[i];
if (xt != _xt)
free_dvector(xt,0,di-1);
//printf("~~~ line minimizer returning %e\n",xf);
return xf;
}
#undef POWELL_GOLD
#undef POWELL_CGOLD
#undef POWELL_MAXIT
/* -------------------------------------- */
/* Conjugate Gradient optimiser using partial derivatives. */
/* return 0 on sucess, 1 on failure due to excessive itterions */
/* Result will be in cp */
/* Note that we could use gradient in line minimiser, */
/* but this seems to be slower, so we don't use it. */
int conjgrad(
double *rv, /* If not NULL, return the residual error */
int di, /* Dimentionality */
double cp[], /* Initial starting point and return value */
double s[], /* Size of initial search area */
#ifdef ABSTOL
double ftol, /* Absolute tollerance of error change to stop on */
#else
double ftol, /* Relative tollerance of error change to stop on */
#endif
int maxit, /* Maximum iterations allowed */
double (*func)(void *fdata, double tp[]), /* Error function to evaluate */
double (*dfunc)(void *fdata, double dp[], double tp[]), /* Gradient & function to evaluate */
/* dfunc() should return DFUNC_NRV if it doesn't return function value */
void *fdata, /* Opaque data needed by function */
void (*prog)(void *pdata, int perc), /* Optional progress percentage callback */
void *pdata /* Opaque data needed by prog() */
) {
int i, iter;
double *svec, _svec[10]; /* Search vector */
double *ssvec, _ssvec[10]; /* s[] scaled search vector */
double *gvec, _gvec[10]; /* G direction vector */
double *hvec, _hvec[10]; /* H direction vector */
double retv; /* Returned function value at p */
double stopth; /* Current stop threshold */
double startdel = -1.0; /* Initial change in function value */
double curdel; /* Current change in function value */
double brat; /* svec to s[] ratio */
double svec_sca; /* svec scale factor */
int pc = 0; /* Percentage complete */
if (di <= 10) {
svec = _svec;
ssvec = _ssvec;
gvec = _gvec;
hvec = _hvec;
} else {
svec = dvector(0, di-1);
ssvec = dvector(0, di-1);
gvec = dvector(0, di-1);
hvec = dvector(0, di-1);
}
CDBG(("conjgrad with di %d\n", di))
CDBG((" cp = %s\n", debPdv(di,cp)))
CDBG((" s = %s\n", debPdv(di,s)))
if (prog != NULL) /* Report initial progress */
prog(pdata, pc);
/* Initial function and gradient evaluation */
CDBG((" calling dfunc\n"))
retv = (*dfunc)(fdata, svec, cp);
CDBG((" returned %e and d %s\n",retv,debPdv(di,svec)))
if (retv == DFUNC_NRV) {
CDBG((" calling func\n"))
retv = (*func)(fdata, cp);
} else {
CDBG((" dfunc returns func value %f\n",retv))
}
/* svec[] seems to be large after this. Compute scaled version that */
/* has maximum of s[] so that line search is guided by the search radius. */
for (brat = 0.0, i = 0; i < di; i++) {
double rat = fabs(svec[i]) / fabs(s[i]);
if (rat > brat)
brat = rat;
}
svec_sca = 1.0;
if (brat > DBL_EPSILON)
svec_sca /= brat;
CDBG((" svec_sca = %f\n",svec_sca))
/* Initial vector setup */
for (i = 0; i < di; i++) {
gvec[i] = -svec[i];
svec[i] = hvec[i] = gvec[i]; /* Set G & H to -ve gradient */
ssvec[i] = svec[i] * svec_sca; /* Scale the search vector to s[] size */
}
CDBG((" initial dir = %s\n", debPdv(di, ssvec)));
CDBG((" initial retv = %f\n",retv));
/* Itterate untill we converge on a solution, or give up. */
for (iter = 1; iter < maxit; iter++) {
double gamden, gamnum, gam;
double pretv; /* Previous function return value */
CDBG(("conjrad it %d: about to do linmind\n",iter))
pretv = retv;
#ifdef USE_LINMIND
retv = linmind(cp, ssvec, di, ftol, func, dfunc, fdata);
#else
retv = linmin(cp, ssvec, di, ftol, func, fdata);
#endif
#ifdef ABSTOL
stopth = ftol; /* Absolute tollerance */
#else
stopth = ftol * 0.5 * (fabs(pretv) + fabs(retv) + DBL_EPSILON);
#endif
curdel = fabs(pretv - retv);
CDBG((" this retv = %f, pretv = %f, curdel = %f\n",retv,pretv,curdel));
if (startdel < 0.0) {
startdel = curdel;
} else if (prog != NULL) { /* Update percentage */
int tt;
tt = (int)(100.0 * pow((log(curdel) - log(startdel))/(log(stopth) - log(startdel)), 4.0) + 0.5);
if (tt > pc && tt < 100) {
pc = tt;
prog(pdata, pc); /* Report initial progress */
}
}
/* If we have had at least one change of direction and */
/* reached a suitable tollerance, then finish */
if (iter > 1 && curdel <= stopth) {
CDBG((" stopping on itter %d because curdel %f <= stopth %f\n",iter, curdel,stopth));
break;
}
CDBG((" not stopping on itter %d because curdel %f > stopth %f\n",iter, curdel,stopth));
CDBG(("conjrad: recomputing direction\n"))
(*dfunc)(fdata, svec, cp); /* (Don't use retv as it wrecks stop test) */
CDBG((" pderiv = %s\n", debPdv(di, svec)));
/* Compute gamma */
for (gamnum = gamden = 0.0, i = 0; i < di; i++) {
gamden += gvec[i] * gvec[i];
// gamnum += svec[i] * svec[i]; /* Flecher-Reeves */
gamnum += svec[i] * (gvec[i] + svec[i]); /* Polak-Ribiere */
}
CDBG((" gamnum = %f, gamden = %f\n", gamnum,gamden));
if (fabs(gamden) < DBL_EPSILON) { /* Gradient is exactly zero */
CDBG(("conjrad: gradient is exactly zero\n"))
break;
}
gam = gamnum/gamden;
CDBG(("conjrad: gamma = %f = %f/%f\n",gam,gamnum,gamden));
CDBG((" gvec[] = %s, hvec = %s\n", debPdv(di,gvec),debPdv(di,hvec)));
/* Adjust seach direction */
for (i = 0; i < di; i++) {
gvec[i] = -svec[i];
svec[i] = hvec[i] = gvec[i] + gam * hvec[i];
}
/* svec[] seems to be large after this. Compute scaled version that */
/* has maximum of s[] so that line search is guided by the search radius. */
for (brat = 0.0, i = 0; i < di; i++) {
double rat = fabs(svec[i]) / fabs(s[i]);
if (rat > brat)
brat = rat;
}
svec_sca = 1.0/brat;
for (i = 0; i < di; i++)
ssvec[i] = svec[i] * svec_sca;
CDBG((" ssvec = %s\n", debPdv(di,ssvec)));
}
/* Free up all the temporary vectors and matrix */
if (di > 10) {
free_dvector(hvec, 0, di-1);
free_dvector(gvec, 0, di-1);
free_dvector(ssvec, 0, di-1);
free_dvector(svec, 0, di-1);
}
if (prog != NULL) /* Report final progress */
prog(pdata, 100);
if (rv != NULL)
*rv = retv;
CDBG((" conjgrad returning = %f\n", retv));
if (iter < maxit)
return 0;
return 1; /* Failed due to execessive itterations */
}
#define POWELL_GOLD 1.618034
#define POWELL_MAXIT 100
/* Line bracketing and minimisation routine using derivatives */
/* This is not used, because it typically makes it slower */
/* - it may take less itterations, but each itteration uses */
/* a func() and dfunc() call, at least doubling itter overhead. */
/* Return value at minimum. */
double linmind(
double cp[], /* Start point, and returned value */
double xi[], /* Search vector */
int di, /* Dimensionality */
#ifdef ABSTOL
double ftol, /* Absolute tolerance to stop on */
#else
double ftol, /* Relative tolerance to stop on */
#endif
double (*func)(void *fdata, double tp[]), /* Error function to evaluate */
double (*dfunc)(void *fdata, double dp[], double tp[]), /* Gradient function to evaluate */
/* dfunc() should return DFUNC_NRV if it doesn't return function value */
void *fdata) /* Opaque data for func() */
{
int i;
double ax, xx, bx; /* Search vector multipliers */
double af, xf, bf; /* Function values at those points */
double *xt, _xt[10]; /* Trial point */
double *df, _df[10]; /* Derivative vector */
if (di <= 10) {
xt = _xt;
df = _df;
} else {
xt = dvector(0, di-1); /* Vector for trial point */
df = dvector(0, di-1); /* Vector for trial point */
}
/* -------------------------- */
/* First bracket the solution */
LDBG((" linmind: Bracketing solution\n"))
/* The line is measured as startpoint + offset * search vector. */
/* (Search isn't symetric, but it seems to depend on cp being */
/* best current solution ?) */
ax = 0.0;
for (i = 0; i < di; i++)
xt[i] = cp[i] + ax * xi[i];
af = (*func)(fdata, xt);
/* xx being vector offset 0.618 */
xx = 1.0/POWELL_GOLD;
for (i = 0; i < di; i++)
xt[i] = cp[i] + xx * xi[i];
xf = (*func)(fdata, xt);
LDBG((" linmind: Initial points a:%f:%f -> b:%f:%f\n",ax,af,xx,xf))
/* Fix it so that we are decreasing from point a -> x */
if (xf > af) {
double tt;
tt = ax; ax = xx; xx = tt;
tt = af; af = xf; xf = tt;
}
LDBG((" linmind: Ordered Initial points a:%f:%f -> b:%f:%f\n",ax,af,xx,xf))
bx = xx + POWELL_GOLD * (xx-ax); /* Guess b beyond a -> x */
for (i = 0; i < di; i++)
xt[i] = cp[i] + bx * xi[i];
bf = (*func)(fdata, xt);
LDBG((" linmind: Initial bracket a:%f:%f x:%f:%f b:%f:%f\n",ax,af,xx,xf,bx,bf))
#ifdef SLOPE_SANITY_CHECK
/* If we're not seeing a slope indicitive of progress */
/* of order ftol, give up straight away */
if (2000.0 * fabs(xf - bf) <= ftol * (fabs(xf) + fabs(bf))
&& 2000.0 * fabs(af - xf) <= ftol * (fabs(af) + fabs(xf))) {
LDBG((" linmind: giving up because slope is too shallow\n"))
if (di > 10) {
free_dvector(df, 0, di-1);
free_dvector(xt, 0, di-1);
}
if (bf < xf) {
xf = bf;
xx = bx;
}
goto done;
}
#endif /* SLOPE_SANITY_CHECK */
/* While not bracketed */
while (xf > bf) {
double ulim, ux, uf;
double tt, r, q;
LDBG((" linmind: Not bracketed because xf %f > bf %f\n",xf, bf))
LDBG((" ax = %f, xx = %f, bx = %f\n",ax,xx,bx))
/* Compute ux by parabolic interpolation from a, x & b */
q = (xx - bx) * (xf - af);
r = (xx - ax) * (xf - bf);
tt = q - r;
if (tt >= 0.0 && tt < 1e-20) /* If +ve too small */
tt = 1e-20;
else if (tt <= 0.0 && tt > -1e-20) /* If -ve too small */
tt = -1e-20;
ux = xx - ((xx - bx) * q - (xx - ax) * r) / (2.0 * tt);
ulim = xx + 100.0 * (bx - xx); /* Extrapolation limit */
//printf("~1 ux = %f, ulim = %f\n",ux,ulim);
if ((xx - ux) * (ux - bx) > 0.0) { /* u is between x and b */
for (i = 0; i < di; i++) /* Evaluate u */
xt[i] = cp[i] + ux * xi[i];
uf = (*func)(fdata, xt);
//printf("~1 u is between x and b, uf = %f\n",uf);
if (uf < bf) { /* Minimum is between x and b */
//printf("~1 min is between x and b\n");
ax = xx; af = xf;
xx = ux; xf = uf;
break;
} else if (uf > xf) { /* Minimum is between a and u */
//printf("~1 min is between a and u\n");
bx = ux; bf = uf;
break;
}
/* Parabolic fit didn't work, look further out in direction of b */
ux = bx + POWELL_GOLD * (bx-xx);
//printf("~1 parabolic fit didn't work,look further in direction of b (%f)\n",ux);
} else if ((bx - ux) * (ux - ulim) > 0.0) { /* u is between b and limit */
for (i = 0; i < di; i++) /* Evaluate u */
xt[i] = cp[i] + ux * xi[i];
uf = (*func)(fdata, xt);
//printf("~1 u is between b and limit uf = %f\n",uf);
if (uf > bf) { /* Minimum is between x and u */
//printf("~1 min is between x and uf\n");
ax = xx; af = xf;
xx = bx; xf = bf;
bx = ux; bf = uf;
break;
}
xx = bx; xf = bf; /* Continue looking */
bx = ux; bf = uf;
ux = bx + POWELL_GOLD * (bx - xx); /* Test beyond b */
//printf("~1 continue looking beyond b (%f)\n",ux);
} else if ((ux - ulim) * (ulim - bx) >= 0.0) { /* u is beyond limit */
ux = ulim;
//printf("~1 use limit\n");
} else { /* u is to left side of x ? */
ux = bx + POWELL_GOLD * (bx-xx);
//printf("~1 look gold beyond b (%f)\n",ux);
}
/* Evaluate u, and move into place at b */
for (i = 0; i < di; i++)
xt[i] = cp[i] + ux * xi[i];
uf = (*func)(fdata, xt);
//printf("~1 lookup ux %f value uf = %f\n",ux,uf);
ax = xx; af = xf;
xx = bx; xf = bf;
bx = ux; bf = uf;
//printf("~1 move along to the right (a<-x, x<-b, b-<u)\n");
}
LDBG((" linmind: Got bracket a:%f:%f x:%f:%f b:%f:%f\n",ax,af,xx,xf,bx,bf))
/* Got bracketed minimum between a -> x -> b */
//printf("~1 got bracketed minimum at %f (%f), %f (%f), %f (%f)\n",ax,af,xx,xf,bx,bf);
/* --------------------------------------- */
/* Now use brent minimiser bewteen a and b */
{
/* a and b bracket solution */
/* x is best function value so far */
/* w is second best function value so far */
/* v is previous second best, or third best */
/* u is most recently tested point */
double wx, vx, ux; /* Search vector multipliers */
double wf, vf = 0.0, uf; /* Function values at those points */
double xd, wd, vd, ud; /* Derivative values at those points */
int iter;
double de = 0.0; /* Distance moved on previous step */
double e = 0.0; /* Distance moved on 2nd previous step */
/* Make sure a and b are in ascending order */
if (ax > bx) {
double tt;
tt = ax; ax = bx; bx = tt;
tt = af; af = bf; bf = tt;
}
wx = vx = xx; /* Initial values of other center points */
wf = xf = xf;
/* Lookup derivative at x (we already have xf from bracketing) */
for (i = 0; i < di; i++)
xt[i] = cp[i] + xx * xi[i];
(*dfunc)(fdata, df, xt);
for (xd = 0.0, i = 0; i < di; i++)
xd += xi[i] * df[i];
wd = ud = xd;
LDBG((" linmind: xx %f, deriv. xd %f\n",xx,xd))
for (iter = 1; iter <= POWELL_MAXIT; iter++) {
double mx = 0.5 * (ax + bx); /* m is center of bracket values */
#ifdef ABSTOL
double tol1 = ftol; /* Absolute tollerance */
#else
double tol1 = ftol * fabs(xx) + 1e-10;
#endif
double tol2 = 2.0 * tol1;
LDBG((" linmind it %d: Got bracket a:%f:%f x:%f:%f b:%f:%f\n",iter, ax,af,xx,xf,bx,bf))
/* See if we're done */
if (fabs(xx - mx) <= (tol2 - 0.5 * (bx - ax))) {
LDBG((" linmind: We're done because %e <= %e\n",fabs(xx - mx), tol2 - 0.5 * (bx - ax)))
break;
}
LDBG((" linmind: e %f tol2 %f\n",e,tol1))
if (fabs(e) > tol1) { /* Do a trial secant fit */
double te;
double dx1, dx2; /* Secant extrapolation points */
double ux1, ux2;
int ch1, ch2;
LDBG((" linmind: Doing trial secant fit\n" ))
dx2 = dx1 = 2.0 * (bx - ax); /* Default to values out of the ax..bx bracket */
/* Extrapolated points from last two points (secant method) */
if (wd != xd)
dx1 = (wx - xx) * xd/(xd - wd);
if (vd != xd)
dx2 = (vx - xx) * xd/(xd - vd);
ux1 = xx + dx1;
ux2 = xx + dx2;
/* Check which one is reasonable */
ch1 = (ax - ux1) * (ux1 - bx) > 0.0 && xd * dx1 < 0.0;
ch2 = (ax - ux2) * (ux2 - bx) > 0.0 && xd * dx2 < 0.0;
LDBG((" linmind: Doing dx1 %f dx2 %f ux1 %f ux2 %f ch1 %d ch2 %d\n",dx1,dx2,ux1,ux2,ch1,ch2))
te = e; /* Save previous e value */
e = de; /* Previous steps distance moved */
if (!ch1 && !ch2)
goto bisect;
/* Use smallest or the one that's valid */
if (ch1 && ch2)
de = fabs(dx1) < fabs(dx2) ? dx1 : dx2;
if (ch1)
de = dx1;
else if (ch2)
de = dx2;
LDBG((" linmind: set de %f\n",de))
if (fabs(de) > fabs(0.5 * te)) {
LDBG((" linmind: abs(de) %f > abs(te/2 = %f)\n",fabs(de),fabs(0.5 * te)))
goto bisect;
}
ux = xx + de;
if ((ux - ax) < tol2 || (bx - ux) < tol2) {
if ((mx - xx) < 0.0)
de = -fabs(tol1);
else
de = fabs(tol1);
LDBG((" linmind: Set de to tol1 %f\n",de))
}
#ifdef LDEBUG
else {
LDBG((" linmind: Using secant fit de %f\n",de))
}
#endif
/* else bisect picking side using sign of derivative */
} else {
bisect:
e = (xd >= 0.0 ? ax - xx : bx -xx);
de = 0.5 * e;
LDBG((" linmind: Continuing bisection search de %f\n",de))
}
if (fabs(de) >= tol1) { /* If de moves as much as tol1 or more */
ux = xx + de; /* use it */
/* Evaluate function */
for (i = 0; i < di; i++)
xt[i] = cp[i] + ux * xi[i];
uf = (*func)(fdata, xt);
LDBG((" linmind: ux = %f = xx %f + de %f, uf %f\n",ux,xx,de,uf))
} else { /* else move by tol1 in direction de */
if (de > 0.0) {
ux = xx + tol1;
LDBG((" linmind: ux = %f = xx %f + tol1 %f\n",ux,xx,tol1))
} else {
ux = xx - tol1;
LDBG((" linmind: ux = %f = xx %f - tol1 %f\n",ux,xx,tol1))
}
/* Evaluate function */
for (i = 0; i < di; i++)
xt[i] = cp[i] + ux * xi[i];
uf = (*func)(fdata, xt);
LDBG((" linmind: uf %f\n",uf))
if (uf > xf) { /* If tol1 step downhill takes us uphill, we're done */
goto done;
}
}
/* Evaluate derivative at trial point */
(*dfunc)(fdata, df, xt);
for (ud = 0.0, i = 0; i < di; i++)
ud += xi[i] * df[i];
LDBG((" linmind: ux %f, deriv. ud %f\n",ux,ud))
/* Houskeeping: */
if (uf <= xf) { /* Found new best solution */
LDBG((" linmind: found new best solution at %f val %f dval %f\n",ux,uf,ud))
if (ux >= xx) {
ax = xx; af = xf; /* New lower bracket */
} else {
bx = xx; bf = xf; /* New upper bracket */
}
vx = wx; vf = wf; vd = wd; /* New previous 2nd best solution */
wx = xx; wf = xf; wd = xd; /* New 2nd best solution from previous best */
xx = ux; xf = uf; xd = ud; /* New best solution from latest */
} else { /* Found a worse solution */
LDBG((" linmind: found new worse solution at %f val %f dval %f\n",ux,uf,ud))
LDBG((" linmind: current best at %f val %f dval %f\n",xx,xf,xd))
if (ux < xx) {
ax = ux; af = uf; /* New lower bracket */
} else {
bx = ux; bf = uf; /* New upper bracket */
}
if (uf <= wf || wx == xx) { /* New 2nd best solution, or equal best */
vx = wx; vf = wf; vd = wd; /* New previous 2nd best solution */
wx = ux; wf = uf; wd = ud; /* New 2nd best from latest */
} else if (uf <= vf || vx == xx || vx == wx) { /* New 3rd best, or equal 1st & 2nd */
vx = ux; vf = uf; vd = ud; /* New previous 2nd best from latest */
}
}
} /* Next itter */
/* !!! should do something if iter > POWELL_MAXIT ??? */
/* Solution is at xx, xf */
done:;
if (di > 10) {
free_dvector(df, 0, di-1);
free_dvector(xt, 0, di-1);
}
/* Compute solution vector */
LDBG((" linmind: computing soln from best at %f val %f dval %f\n",xx,xf,xd))
for (i = 0; i < di; i++)
cp[i] += xx * xi[i];
} /* Minimizer context */
return xf;
}
#undef POWELL_GOLD
#undef POWELL_MAXIT
|