1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
|
/*
* Argyll Color Correction System
*
* Incremental far point class
*
* Author: Graeme W. Gill
* Date: 6/11/2002
*
* Copyright 2002 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
/*
Algorithm:
Starting with a previous test point as a seed, use a random starte point
and minimisation algorithm to locate another point that is as far as
possible from the nearest existing test point in perceptual space,
while remaining in gamut at all tines. This means that ideally each
point "fills in" the gaps in the existing distribution, while starting
from an existing point.
The performance is still not very good, as the inner loop involves
locating the nearest existing point, as well as converting from
device coordinates to perceptual space. If the powell search radius
is reduced too much the uniformity of the distribution suffers.
*/
/* TTBD:
It would probably help the uniformity of distribution if we could
aproximately locate the next seed point as the one with the
biggest adjoing "gap", and this may speed things up by allowing us
to reduce the powel search radius.
Perhaps switching to a balltree indexing structure would speed up
nearest ppoint finding as well as providing a mechanism to quickly
locate the nearest "void".
Subsequent experience indicates that furthest distance in perceptual
space may not be the best strategy, but furthest distance in device
space may be. Add #define allowing this to be tested ??
*/
#undef DEBUG
#define PERC_PLOT 1 /* Emit perceptive space plots (if DEBUG) */
#define DO_WAIT 1 /* Wait for user key after each plot */
#define ASSERTS
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#ifdef DEBUG
# include "plot.h"
# include "ui.h"
#endif
#include "numlib.h"
#include "sort.h"
#include "icc.h"
#include "xcolorants.h"
#include "targen.h"
#include "ifarp.h"
#include "sort.h" /* Heap sort */
#ifdef DEBUG
static void dump_image(ifarp *s, int pcp);
static void dump_image_final(ifarp *s, int pcp);
#endif
#define MAX_TRIES 30 /* Maximum itterations */
/* nn functions */
static double nearest(ifarp *s, double *q);
static void init_nn(ifarp *s);
static void add_nn(ifarp *s);
static void del_nn(ifarp *s);
/* ----------------------------------------------------- */
/* Default convert the nodes device coordinates into approximate perceptual coordinates */
static void
ifarp_to_percept(void *od, double *p, double *d) {
ifarp *s = (ifarp *)od;
int e;
/* Do nothing - copy device to perceptual. */
for (e = 0; e < s->di; e++) {
p[e] = d[e] * 100.0;
}
}
/* Return the largest distance of the point outside the device gamut. */
/* This will be 0 if inside the gamut, and > 0 if outside. */
static double
ifarp_in_dev_gamut(ifarp *s, double *d) {
int e;
int di = s->di;
double tt, dd = 0.0;
double ss = 0.0;
for (e = 0; e < di; e++) {
ss += d[e];
tt = 0.0 - d[e];
if (tt > 0.0) {
if (tt > dd)
dd = tt;
}
tt = d[e] - 1.0;
if (tt > 0.0) {
if (tt > dd)
dd = tt;
}
}
tt = ss - s->ilimit;
if (tt > 0.0) {
if (tt > dd)
dd = tt;
}
return dd;
}
/* Snap a point to the device gamut boundary. */
/* Return nz if it has been snapped. */
static int snap_to_gamut(ifarp *s, double *d) {
int e;
int di = s->di;
double dd; /* Smallest distance */
double ss; /* Sum */
int rv = 0;
/* Snap to ink limit first */
for (ss = 0.0, e = 0; e < di; e++)
ss += d[e];
dd = fabs(ss - s->ilimit);
if (dd < 0.0) {
int j;
for (j = 0; j < di; j++)
d[j] *= s->ilimit/ss; /* Snap to ink limit */
rv = 1;
}
/* Now snap to any other dimension */
for (e = 0; e < di; e++) {
dd = fabs(d[e] - 0.0);
if (dd < 0.0) {
d[e] = 0.0; /* Snap to orthogonal boundary */
rv = 1;
}
dd = fabs(1.0 - d[e]);
if (dd < 0.0) {
d[e] = 1.0; /* Snap to orthogonal boundary */
rv = 1;
}
}
return rv;
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Reverse lookup function :- perceptual to device coordinates */
/* Definition of the optimization functions handed to powell() */
/* Return metric to be minimised, and */
/* an error >= 50000 on being out of device gamut */
static double efunc(void *edata, double p[]) {
ifarp *s = (ifarp *)edata;
double rv;
if ((rv = (ifarp_in_dev_gamut(s, p))) > 0.0) {
rv = rv * 500.0 + 500.0; /* Discourage being out of gamut */
} else {
double v[MXTD];
s->percept(s->od, v, p);
rv = 500.0 - nearest(s, v);
}
//printf("~1 rv = %f from %f %f\n",rv,p[0],p[1]);
return rv;
}
/* Given a point in device space, optimise it to be */
/* within the device gamut, as well as being as far as */
/* possible from the nearest point in perceptual space. */
/* return nz if powell failed */
static int
optimise_point(
ifarp *s,
double *d /* starting and returned device position */
) {
int e, di = s->di;
double sr[MXTD]; /* Search radius in each device dimension */
double drad = 1.0; /* Search Radius (affects fill evenness) */
double ptol = 0.001; /* Tolerance */
double tt;
// ~~99
for (e = 0; e < di; e++)
sr[e] = drad; /* Device space search radius */
if (powell(&tt, di, d, sr, ptol, 500, efunc, (void *)s, NULL, NULL) != 0 || tt >= 50000.0) {
#ifdef DEBUG
warning("ifarp: powell failed, tt = %f",tt);
#endif
return 1;
}
snap_to_gamut(s, d);
return 0;
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Create a new node. */
/* Return current number of nodes */
static int new_node(
ifarp *s,
int ix /* Index of point to start from */
) {
int di = s->di;
int e;
// ~~99
/* Retry if powell failes */
for (;;) {
/* Create the new point by cloning the existing point */
s->nodes[s->np].fx = 0; /* Not a fixed/pre-existing node */
for (e = 0; e < di; e++) {
s->nodes[s->np].p[e] = s->nodes[ix].p[e];
}
/* Compute new point location that is farthest from nearest existing point */
if (optimise_point(s, s->nodes[s->np].p) == 0)
break;
}
/* compute perceptual location */
s->percept(s->od, s->nodes[s->np].v, s->nodes[s->np].p);
#ifdef DEBUG
printf("Added node %d at perc %f %f, dev %f %f\n",
s->np,
s->nodes[s->np].v[0],
s->nodes[s->np].v[1],
s->nodes[s->np].p[0],
s->nodes[s->np].p[1]);
#endif
/* Add the node to our current list */
s->nodes[s->np].touch = s->tbase;
s->np++;
add_nn(s);
return s->np;
}
/* ============================================= */
/* Main object functions */
/* Initialise, ready to read out all the points */
static void ifarp_reset(ifarp *s) {
s->rix = 0;
}
/* Read the next set of non-fixed points values */
/* return non-zero when no more points */
static int ifarp_read(
ifarp *s,
double *d, /* Device position */
double *p /* Perceptual value */
) {
int j;
for (; s->rix < s->np; s->rix++) {
if (s->nodes[s->rix].fx == 0) {
for (j = 0; j < s->di; j++) {
if (d != NULL)
d[j] = s->nodes[s->rix].p[j];
if (p != NULL)
p[j] = s->nodes[s->rix].v[j];
}
s->rix++;
return 0;
}
}
return 1;
}
/* Destroy ourselves */
static void
ifarp_del(ifarp *s) {
if (s->nodes != NULL)
free(s->nodes);
free (s);
}
/* Constructor */
ifarp *new_ifarp(
int verb, /* Verbosity */
int di, /* Dimensionality of device space */
double ilimit, /* Ink limit (sum of device coords max) */
int inp, /* Number of points to generate */
fxpos *fxlist, /* List of existing fixed points (may be NULL) */
int fxno, /* Number of existing fixes points */
void (*percept)(void *od, double *out, double *in), /* Perceptual lookup func. */
void *od /* context for Perceptual function */
) {
ifarp *s;
int e, i;
#ifdef DEBUG
printf("new_ifarp called with di %d, inp %d, fxno = %d\n",di,inp,fxno);
#endif
if ((s = (ifarp *)calloc(sizeof(ifarp), 1)) == NULL)
error ("ifarp: ifarp malloc failed");
s->reset = ifarp_reset;
s->read = ifarp_read;
s->del = ifarp_del;
/* If no perceptual function given, use default */
if (percept == NULL) {
s->percept = ifarp_to_percept;
s->od = s;
} else {
s->percept = percept;
s->od = od;
}
s->ilimit = ilimit;
s->inp = inp; /* Intended number of points */
s->np = 0;
if (di > MXTD)
error ("ifarp: Can't handle di %d",di);
s->di = di;
s->tbase = 0;
/* Initial alloc of nodes */
if ((s->nodes = (ifpnode *)malloc(s->inp * sizeof(ifpnode))) == NULL)
error ("ifarp: nodes malloc failed");
/* Copy fixed nodes */
for (i = 0; (i < fxno) && (s->np < s->inp); i++) {
s->nodes[s->np].fx = 1;
for (e = 0; e < di; e++)
s->nodes[s->np].p[e] = fxlist[i].p[e];
s->percept(s->od, s->nodes[i].v, s->nodes[i].p);
s->nodes[s->np].touch = s->tbase;
s->np++;
}
/* Create at least one seed point */
if (s->np == 0) {
s->nodes[s->np].fx = 0;
for (e = 0; e < di; e++)
s->nodes[s->np].p[e] = 0.0; /* This is assumed to be in gamut */
s->percept(s->od, s->nodes[i].v, s->nodes[i].p);
s->nodes[s->np].touch = s->tbase;
s->np++;
}
/* Setup initial nearest point acceleration structure */
init_nn(s);
/* Create initial patches */
// ~~99
if (verb)
printf("Full points:\n");
for (i = 0; s->np < s->inp; i += 17) {
i %= s->np;
new_node(s, i);
if (verb) {
int pc = (int)(100.0 * s->np/s->inp + 0.5);
printf(" % 3d%%%c",pc,cr_char); fflush(stdout);
}
}
if (verb)
printf("\n");
/* We're done with acceleration structure */
del_nn(s);
return s;
}
/* --------------------------------------------------- */
/* (This code is has been copied from gamut/gamut.c) */
#ifdef DEBUG
#define NN_INF 100000.0
#else
#define NN_INF 1e307
#endif
/* Given a point, */
/* return the nearest existint test point. */
static double
nearest(
ifarp *s,
double *q /* Target point location */
) {
int e, i, k;
int di = s->di;
int wex[MXTD * 2]; /* Current window edge indexes */
double wed[MXTD * 2]; /* Current window edge distances */
/* Indexes are axis * 2 +0 for lower edge, */
/* +1 for upper edge of search box. */
/* We are comparing lower edge of search box */
/* with upper edge of bounding box etc. */
//printf("~1 nearest called\n");
/* We have to find out which existing point the point will be nearest */
if ((s->tbase + di) < s->tbase) { /* Overflow of touch count */
for (i = 0; i < s->np; i++)
s->sax[0][i]->touch = 0; /* reset it in all the objects */
s->tbase = 0;
}
s->ttarget = s->tbase + di; /* Target touch value */
//printf("\n");
//printf("Query point is %f %f\n",q[0], q[1]);
/* Find starting indexes within axis arrays */
for (e = 0; e < (2 * di); e++) { /* For all axes min & max */
int f = e/2; /* Axis */
int i0, i1, i2; /* Search indexes */
double v0, v1, v2; /* Box */
double qf, ww;
/* Binary search this edge */
qf = q[f]; /* strength reduced q[f] */
//printf("\n");
//printf("isearching axis %d %s for %f\n",f, e & 1 ? "max" : "min", qf);
i0 = 0;
i2 = s->np - 1;
v0 = s->sax[f][i0]->v[f];
v2 = s->sax[f][i2]->v[f];
//printf("start points %d - %d, bound %f - %f\n",i0, i2, v0, v2);
if (qf <= v0) {
i2 = i0;
v2 = v0;
} else if (qf >= v2) {
i0 = i2;
v0 = v2;
} else {
do {
i1 = (i2 + i0)/2; /* Trial point */
v1 = s->sax[f][i1]->v[f]; /* Value at trial */
if (v1 < qf) {
i0 = i1; /* Take top half */
v0 = v1;
} else {
i2 = i1; /* Take bottom half */
v2 = v1;
}
//printf("current point %d - %d, bound %f - %f\n",i0, i2, v0, v2);
} while ((i2 - i0) > 1);
}
if (e & 1) { /* Max side of window */
int tc; /* total object count */
ww = v2 - qf;
wed[e] = fabs(ww) * ww;
wex[e] = i2;
/* Check that min and max together will cover at least s->np objects */
tc = s->np - i2 + wex[e ^ 1] + 1;
//printf("got %d, expected %d\n",tc, s->np);
/* (I don't really understand why this works!) */
if (tc < s->np) { /* We haven't accounted for all the objects */
int el = e ^ 1; /* Low side sax */
int ti0, ti2;
double tv0, tv2;
ti0 = wex[el];
ti2 = i2;
//printf("We have straddling objects, initial indexes are %d - %d\n",ti0, ti2);
/* While straddling objects remain undiscovered: */
while (tc < s->np) {
tv0 = NN_INF; /* Guard values */
tv2 = -NN_INF;
/* Increment low side until we find a straddler */
while (ti0 < (s->np-1)) {
ww = s->sax[f][++ti0]->v[f]; /* Position of the other end */
if (ww < qf) {
//printf("found low object %d at index %d that straddles\n",s->sax[f][ti0]-s->nodes,ti0);
tv0 = qf - s->sax[f][ti0]->v[f];
break;
}
}
/* Decrement high side until we find a straddler */
while (ti2 > 0) {
ww = s->sax[f][--ti2]->v[f]; /* Position of the other end */
if (ww > qf) {
//printf("found high object %d at index %d that straddles\n",s->sax[f][ti2]-s->nodes,ti2);
tv2 = s->sax[f][ti2]->v[f] - qf;
break;
}
}
/* Choose the closest */
if (tv0 > tv2) {
wed[el] = fabs(tv0) * tv0;
wex[el] = ti0;
tc++;
} else {
wed[e] = fabs(tv2) * tv2;
wex[e] = ti2;
tc++;
}
}
//printf("After correction we have %d - %d\n",wex[e^1], wex[e]);
}
} else { /* Min side of window */
ww = q[f] - v0;
wed[e] = fabs(ww) * ww;
wex[e] = i0;
}
}
/* Expand a di dimenstional cube centered on the target point, */
/* jumping to the next nearest point on any axis, discovering */
/* any bounding boxes that are within the expanding window */
/* by checking their touch count. */
/* The first point found establishes the initial best distance. */
/* When the window expands beyond the point where it can improve */
/* the best distance, stop */
{
double bw = 0.0; /* Current window distance */
double bdist = NN_INF; /* Best possible distance to an object outside the window */
int bix; /* Index of best point */
/* Until we're done */
for (;;) {
int ee; /* Axis & expanding box edge */
int ff; /* Axis */
int ii; /* Index of chosen point */
ifpnode *ob; /* Current object */
unsigned int ctv; /* Current touch value */
//printf("\n");
//printf("wwidth = %f, bdist = %f, window = %d-%d, %d-%d\n",
//bw, bdist, wex[0], wex[1], wex[2], wex[3]);
//printf("window edge distances are = %f-%f, %f-%f\n",
//wed[0], wed[1], wed[2], wed[3]);
/* find next (smallest) window increment axis and direction */
ee = 0;
ii = wex[ee];
bw = wed[ee];
for (e = 1; e < (2 * di); e++) {
if (wed[e] < bw) {
ee = e;
ii = wex[e];
bw = wed[e];
}
}
//printf("Next best is axisdir %d, object %d, axis index %d, best possible dist %f\n",
//ee, s->sax[ee/2][ii] - s->nodes, ii, bw);
if (bw == NN_INF || bw > bdist) {
break; /* Can't go any further, or further points will be worse */
}
#ifdef ASSERTS
if (ii < 0 || ii >= s->np) {
printf("Assert: went out of bounds of sorted axis array\n");
exit(0);
}
#endif
/* Chosen point on ee axis/direction, index ii */
ff = ee / 2; /* Axis only */
ob = s->sax[ff][ii];
/* Touch value of current object */
ctv = ob->touch;
if (ctv < s->ttarget) { /* Not been dealt with before */
/* Touch this new window boundary point */
ob->touch = ctv = ((ctv < s->tbase) ? s->tbase : ctv) + 1;
//printf("New touch count on %d is %d, target %d\n",
//ob - s->nodes, s->sax[ff][ii]->touch, s->ttarget);
/* Check the point out */
if (ctv == (s->tbase + di)) { /* Is within window on all axes */
double tdist = 0.0;
/* Compute distance from query point to this object */
for (k = 0; k < di; k++) {
double tt = ob->v[k] - q[k];
tdist += tt * tt;
}
//printf("Got new best point %d, dist %f\n",ob-s->nodes,sqrt(tdist));
if (tdist < bdist) { /* New closest distance */
bdist = tdist;
bix = ob - s->nodes;
}
}
}
/* Increment next window edge candidate, and figure new edge distance */
if (ee & 1) { /* Top */
if (++wex[ee] >= s->np) {
wed[ee] = NN_INF;
wex[ee]--;
} else {
double ww = s->sax[ff][wex[ee]]->v[ff] - q[ff];
wed[ee] = fabs(ww) * ww;
}
} else {
if (--wex[ee] < 0) {
wed[ee] = NN_INF;
wex[ee]++;
} else {
double ww = q[ff] - s->sax[ff][wex[ee]]->v[ff];
wed[ee] = fabs(ww) * ww;
}
}
}
s->tbase += di; /* Next touch */
//printf("~1 returning closest to node %d distance %f\n",bix,sqrt(bdist));
return sqrt(bdist); /* Return nearest distance */
}
}
/* Setup the nearest function acceleration structure */
/* with the existing points */
static void
init_nn(
ifarp *s
) {
int di = s->di;
int i, k;
int np = s->np; /* Existing number of points */
//printf("~9 init_nn called\n");
s->tbase = 0; /* Initialse touch flag */
/* Allocate the arrays spaces for intended number of points */
for (k = 0; k < di; k++) {
if ((s->sax[k] = (ifpnode **)malloc(sizeof(ifpnode *) * s->inp)) == NULL)
error("Failed to allocate sorted index array");
}
/* Add each existing test point to the axis lists. */
for (i = 0; i < np; i++) {
for (k = 0; k < di; k++)
s->sax[k][i] = &s->nodes[i];
}
/* Sort the axis arrays */
for (k = 0; k < di; k++) {
/* Sort nodes edge list */
#define HEAP_COMPARE(A,B) (A->v[k] < B->v[k])
HEAPSORT(ifpnode *, &s->sax[k][0], np)
#undef HEAP_COMPARE
}
//printf("~9 init_nn done\n");
}
#ifdef NEVER /* Slower but simpler version */
/* Add the last point to the acceleration structure */
static void
add_nn(
ifarp *s
) {
int di = s->di;
int i, k;
int np = s->np; /* Existing number of points */
int ap = np - 1; /* Index of point ot add */
//printf("~9 add_nn called with point ix %d, pos %f %f\n",ap, s->nodes[ap].v[0],s->nodes[ap].v[1]);
for (k = 0; k < di; k++) {
s->sax[k][ap] = &s->nodes[ap];
}
/* Sort the axis arrays */
for (k = 0; k < di; k++) {
/* Sort nodes edge list */
#define HEAP_COMPARE(A,B) (A->v[k] < B->v[k])
HEAPSORT(ifpnode *, &s->sax[k][0], np)
#undef HEAP_COMPARE
}
}
#else
/* Add the last point to the acceleration structure */
static void
add_nn(
ifarp *s
) {
int di = s->di;
int e;
int np = s->np; /* Existing number of points */
int ap = np - 1; /* Index of point to add */
//printf("~9 add_nn called with point ix %d, pos %f %f\n",ap, s->nodes[ap].v[0],s->nodes[ap].v[1]);
for (e = 0; e < di; e++) { /* For all axes */
int i0, i1, i2; /* Search indexes */
double v0, v1, v2; /* Box */
double qf;
qf = s->nodes[ap].v[e]; /* value to be insertion sorted */
//printf("isearching axis %d for %f\n",e, qf);
/* Find index of lowest value that is greater than target */
i0 = 0;
i2 = ap - 1;
v0 = s->sax[e][i0]->v[e];
v2 = s->sax[e][i2]->v[e];
//printf("start points %d - %d, bound %f - %f\n",i0, i2, v0, v2);
if (qf <= v0) {
i1 = i0;
} else if (qf >= v2) {
i1 = ap;
} else {
do {
i1 = (i2 + i0)/2; /* Trial point */
v1 = s->sax[e][i1]->v[e]; /* Value at trial */
if (qf > v1) {
i0 = i1; /* Take top half */
v0 = v1;
} else { /* qf <= v1 */
i2 = i1; /* Take bottom half */
v2 = v1;
}
//printf("current point %d - %d, bound %f - %f\n",i0, i2, v0, v2);
} while ((i2 - i0) > 1);
i1 = i0;
v1 = s->sax[e][i1]->v[e];
/* Ensure we're > than target */
while (v1 <= qf) {
i1++;
if (i1 < ap)
v1 = s->sax[e][i1]->v[e];
else
break;
}
}
/* Make room */
if (i1 < ap) {
memmove((void *)&s->sax[e][i1+1], (void *)&s->sax[e][i1], (ap - i1) * sizeof(ifpnode *));
}
/* Insert */
s->sax[e][i1] = &s->nodes[ap];
}
}
#endif
/* Free everything to do with the nn */
static void del_nn(ifarp *s) {
int di = s->di;
int k;
for (k = 0; k < di; k++) {
free (s->sax[k]);
}
}
/* =================================================== */
#ifdef STANDALONE_TEST
icxColorantLu *clu;
void sa_percept(void *od, double *out, double *in) {
#ifdef NEVER
double lab[3];
clu->dev_to_rLab(clu, lab, in);
out[0] = lab[0];
// out[1] = (lab[1]+100.0)/2.0;
out[1] = (lab[2]+100.0)/2.0;
#else
out[0] = in[0] * 100.0;
out[1] = in[1] * 100.0;
#endif
}
int
main(argc,argv)
int argc;
char *argv[];
{
int npoints = 500;
ifarp *s;
int mask = ICX_BLACK | ICX_GREEN;
int di = 2;
error_program = argv[0];
check_if_not_interactive();
if (argc > 1)
npoints = atoi(argv[1]);
if ((clu = new_icxColorantLu(mask)) == NULL)
error ("Creation of xcolorant lu object failed");
/* Create the required points */
s = new_ifarp(1, di, 1.5, npoints, NULL, 0, sa_percept, (void *)NULL);
#ifdef DEBUG
/* Dump perceptual map */
dump_image(s, PERC_PLOT);
#endif /* DEBUG */
s->del(s);
return 0;
}
#endif /* STANDALONE_TEST */
#ifdef DEBUG
/* Dump the current point positions to a plot window file */
static void
dump_image(ifarp *s, int pcp) {
double minx, miny, maxx, maxy;
double *x1a = NULL;
double *y1a = NULL;
double *x2a = NULL;
double *y2a = NULL;
double *x3a = NULL;
double *y3a = NULL;
int i, nu;
ifpnode *p;
if (s->np == 0)
return;
if (pcp) { /* Perceptual range */
minx = 0.0; /* Assume */
miny = 0.0;
maxx = 100.0;
maxy = 100.0;
} else {
minx = 0.0; /* Assume */
miny = 0.0;
maxx = 1.0;
maxy = 1.0;
}
if ((x1a = (double *)malloc(s->np * sizeof(double))) == NULL)
error ("ifarp: plot malloc failed %d",s->np);
if ((y1a = (double *)malloc(s->np * sizeof(double))) == NULL)
error ("ifarp: plot malloc failed %d",s->np);
if ((x2a = (double *)malloc(s->np * sizeof(double))) == NULL)
error ("ifarp: plot malloc failed %d",s->np);
if ((y2a = (double *)malloc(s->np * sizeof(double))) == NULL)
error ("ifarp: plot malloc failed %d",s->np);
for (nu = i = 0; i < s->np; i++) {
p = &s->nodes[i];
if (pcp) {
x1a[nu] = p->v[0];
y1a[nu] = p->v[1];
x2a[nu] = p->v[0];
y2a[nu] = p->v[1];
} else {
x1a[nu] = p->p[0];
y1a[nu] = p->p[1];
x2a[nu] = p->p[0];
y2a[nu] = p->p[1];
}
nu++;
}
/* Plot the vectors */
do_plot_vec(minx, maxx, miny, maxy,
x1a, y1a, x2a, y2a, nu, DO_WAIT, x3a, y3a, 0);
free(x1a);
free(y1a);
free(x2a);
free(y2a);
}
#endif /* DEBUG */
|