File: aribas.doc

package info (click to toggle)
aribas 1.63-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 1,340 kB
  • ctags: 2,351
  • sloc: ansic: 25,551; pascal: 384; asm: 201; lisp: 133; makefile: 78; sh: 53
file content (4262 lines) | stat: -rw-r--r-- 125,288 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
File aribas.doc

DOCUMENTATION of the

ARIBAS interpreter for Arithmetic, Version 1.60, August 2007
Copyright (C) 1996-2007 O.Forster

ARIBAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Address of the author

        Otto Forster
        Math. Institut der LMU
        Theresienstr. 39
        D-80333 Muenchen, Germany

Email   forster@mathematik.uni-muenchen.de
WWW     http://www.mathematik.uni-muenchen.de/~forster

The latest version of ARIBAS can be obtained by anonymous ftp from

    ftp.mathematik.uni-muenchen.de

directory

    pub/forster/aribas

(*-------------------------------------------------------------------*)
Date of last change of this documentation:

1997-04-22:   added sections on records and pointers, configuration file
1997-07-06:   option -b, readln and multi-line integers
1997-08-19:   getenv; removed create_array; added information on load
1998-10-19:   qs_factorize, next_prime, continue
1999-04-30:   quiet option for qs_factorize et al.
2002-03-03:   max_floatprec, vector operations
2003-06-09:	  Simultaneous Assignment, divide, bit_count, gmtime,
              set_workdir, get_workdir, realloc, stack2string, 
              stack_arraypush, string_scan, binsearch
2002-11-08:   ec_factorize
2004-08-07:   gfp_sqrt, arithmetic in GF(2**n)
2008-08-20:   polynomials over GF(2)

(*-------------------------------------------------------------------*)
Contents

1) INTRODUCTION
2) IDENTIFIERS
3) DATA TYPES
4) OPERATORS, EXPRESSIONS
5) VARIABLE DECLARATIONS
6) TYPE DEFINITIONS, RECORDS, POINTERS
7) CONTROL STRUCTURES
8) FUNCTION REFERENCE
   a) Functions for integer arithmetic
   a1) Functions for arithmetic in GF(2**n)
   a2) Polynomials over GF(2)
   b) Functions for real arithmetic and analysis
   c) Random
   d) Characters, strings
   e) Byte_strings
   f) Arrays, records
   g) Stacks
   h) In/Out
   i) System functions
9) USER DEFINED FUNCTIONS
10) COMMAND LINE ARGUMENTS
(*-------------------------------------------------------------*)

1) INTRODUCTION
===============

ARIBAS is an interactive Interpreter suitable for big integer
arithmetic and multiprecision floating point arithmetic.
It has a syntax similar to Pascal or Modula-2, but contains also
features from other programming languages like C, Lisp, Oberon.

After ARIBAS is started, it displays a prompt ==>
and you may input an expression you want to calculate.
You must mark the end of the input by a full stop '.' and then
press the RETURN key.

Examples:

==> 2*3 + 17.
-: 23

==> 2**1000.
-: 10_71508_60718_62673_20948_42504_90600_01810_56140_48117_05533_60744_37503_
88370_35105_11249_36122_49319_83788_15695_85812_75946_72917_55314_68251_87145_
28569_23140_43598_45775_74698_57480_39345_67774_82423_09854_21074_60506_23711_
41877_95418_21530_46474_98358_19412_67398_76755_91655_43946_07706_29145_71196_
47768_65421_67660_42983_16526_24386_83720_56680_69376

The operator ** denotes exponentiation (as in FORTRAN). The symbol
-: introduces the result of a calculation.
You may also input several expressions separated by semicolons,
for example

==> x := 3; y := 4;
    z := sqrt(x*x + y*y).
-: 5.00000000

There are also control structures available, e.g. the for-loop
which has a syntax similar to Modula-2

==> for k := 2 to 10 do
        writeln(k:3,log(k):12:6);
    end.
  2    0.693147
  3    1.098612
  4    1.386294
  5    1.609438
  6    1.791759
  7    1.945910
  8    2.079442
  9    2.197225
 10    2.302585

In this example the natural logarithms of the integers from 2 to 10
were displayed as a side effect of the writeln command (which
allows format options as in Pascal). The for-loop has an empty
result.
You can also define your own functions, for example

==> function fac(n: integer): integer;
    var
        x: integer;
    begin
        x := 1;
        while n > 1 do
            x := x*n;
            dec(n);
        end;
        return x;
    end.
-: fac

The result of this input is the symbol denoting the name of
the defined function. From now on, you can use this function

==> fac(100).
-: 933_26215_44394_41526_81699_23885_62667_00490_71596_82643_81621_46859_
29638_95217_59999_32299_15608_94146_39761_56518_28625_36979_20827_22375_82511_
85210_91686_40000_00000_00000_00000_00000

These examples are meant only as a first short presentation of
ARIBAS. To get a practical introduction, please study the tutorial
(file aribas.tut).

The following is a more systematic description of ARIBAS.

2) IDENTIFIERS
==============

Identifiers (names of variables, functions and data types) may be
composed of the letters from a to z and A to Z, the digits 0 to 9,
and the underscore _. The first character of an identifier cannot
be a digit.
Examples of admissible identifiers:
        x
        x1
        _alfa1
        lower_bound
        maxSize
Examples of inadmissible identifiers are 1alpha, beta.2 or gamma_$3.
Identifiers may not contain embedded spaces and may not extend
over several lines. Otherwise the length is arbitrary. All characters
of the identifier are significant. ARIBAS is case sensitive, so
maxSize and maxsize are different identifiers. Identifiers of
user defined variables, functions and data types must be different from
the keywords of ARIBAS and from the names of builtin functions and
procedures. One can get a list of these reserved names by the command

==> symbols(aribas).
-: (ARGV, _, __, ___, abs, alloc, and, arccos, arcsin, arctan, arctan2, aribas,
array, atof, atoi, begin, binary, binsearch, bit_and, bit_clear, bit_count, 
bit_length, bit_not, bit_or, bit_set, bit_shift, bit_test, bit_xor, boolean, 
break, by, byte_string, cardinal, cf_factorize, char, chr, close, concat, 
const, continue, cos, dec, decode_float, div, divide, do, double_float, else, 
elsif, end, even, exit, exp, extended_float, external, factor16, factorial, 
false, file, float, float_ecvt, floor, flush, for, frac, ftoa, function, gc, 
gcd, gcdx, get_filepos, get_floatprec, get_printbase, get_printprec, 
get_workdir, getenv, gmtime, halt, help, if, inc, integer, isqrt, itoa, jacobi,
length, load, log, long_float, make_unbound, max, max_arraysize, max_floatprec,
max_intsize, mem_and, mem_bclear, mem_bitswap, mem_bset, mem_btest, 
mem_byteswap, mem_not, mem_or, mem_shift, mem_xor, memavail, min, mod, 
mod_coshmult, mod_inverse, mod_pemult, new, next_prime, nil, not, odd, of, 
open_append, open_read, open_write, or, ord, pi, pointer, prime32test, 
procedure, product, qs_factorize, rab_primetest, random, random_seed, 
read_block, read_byte, readln, real, realloc, record, return, rewind, 
rho_factorize, round, set_filepos, set_floatprec, set_printbase, set_printprec,
set_workdir, sin, single_float, sort, sqrt, stack, stack2array, stack2string, 
stack_arraypush, stack_empty, stack_pop, stack_push, stack_reset, stack_top, 
stderr, stdin, stdout, string, string_scan, string_split, substr_index, sum, 
symbols, system, tan, then, timer, to, tolower, toupper, transcript, true, 
trunc, type, user, var, version, while, write, write_block, write_byte, 
writeln)

The symbols _, __ and ___ are system variables which contain the
three last results.

Example:

==> sqrt(2).
-: 1.41421356

==> sqrt(_).
-: 1.18920711

==> sqrt(_).
-: 1.09050773

==> _ * __ * ___.
-: 1.83400808

==> _ ** (8/7).
-: 2.00000000

Here we calculated the square root of 2, the fourth and the eighth
root of 2 and multiplied the three results. This gives 2 to the power
7/8. Therefore, if we exponentiate by 8/7, we must get back the
number 2.

Comments
--------
Text between the symbols  (*  and  *)  is considered by ARIBAS
as a comment and is ignored. Comments may extend over several lines.
Nested comments are not allowed.
There is another possibility to insert short comments: Text
between the hash character # and the line end is also ignored
by ARIBAS.

3) DATA TYPES
=============

ARIBAS supports the following data types

        integer
        real
        boolean
        char
        string
        byte_string
        array
        stack
        file
        function
        record
        pointer

(*----------------------------------------------------------------*)
integer

The data type integer comprises the whole numbers 0, 1,-1, 2,-2, 3,....
ARIBAS can handle integers up to 20000 or more decimal digits,
see function max_intsize() in the function reference.
Integer literals are given by an optional sign and a sequence
of decimal digits. For better reading, this sequence of digits
may be subdivided by underscores. In this case, immediately
before and immediately after the underscore _, there must be
a digit. Examples of integer literals:
        1
        1234567890
        -3456_78965_12367
Besides the decimal representation of integers, ARIBAS allows also
integer literals with respect to base 2, 8 or 16.
For base 2, the sequence of binary digits (0 and 1) must be
preceded by the prefix 0y. The prefix for basis 8 is 0o. For
basis 16, the sequence of hexadecimal digits (0 ... 9, A ... F)
must be preceded by 0x. (The hexadecimal digits A ... F may also
be written in lower case.) An optional sign comes before the
base prefix. Examples:
        0y111101
        0o177
        0xfffff_ffffe
        -0x123456789ABCDEF

(*----------------------------------------------------------------*)
real

The data type real comprises a computer approximation of the real
numbers. Real literals are given in decimal representation, beginning
with an optional sign + or -, then a non-empty sequence of decimal
digits, an obligatory decimal point, a second non-empty sequence
of decimal digits and an optional scaling factor, consisting of
the symbol E (or e), an optional sign and a non-empty sequence of
decimal digits. Examples:
        0.3
        +3.1e-45
        -0.00007E1000
The following forms are not admissible real literals:
        .333
        333e-3
(The number which is meant by these symbols may be represented by
0.333 or 333.0e-3). Internally, numbers of type real are stored
in binary representation (see function decode_float in the function
reference). This implies for example, that even a simple number
like 0.1 cannot be represented exactly. The precision used
for the calculations with real numbers depends on the current
floating point precision. By default, ARIBAS uses a mantissa of
32 bits (which corresponds to 9-10 decimal digits), but the user
may set the precision to a higher value (up to 4096 binary digits),
using the builtin function set_floatprec. For details, see the
function reference.

(*----------------------------------------------------------------*)
boolean

The data type boolean comprises the truth values false and true.
The logical operators not, and, or apply to boolean operands in the
usual way and yield boolean results. Boolean values are also the
result of arithmetic relational operators. In every place where
ARIBAS expects a boolean value (e.g. as conditions in the if or while
constructions), one can also use integer values. Then the value 0
is considered as false and every nonzero integer counts as true
(this is the same behaviour as in the programming language C).

(*----------------------------------------------------------------*)
char

The data type char comprises 256 characters with code numbers 0
to 255. Characters with code numbers < 128 are the standard ASCII
characters (they comprise printable characters and control characters);
characters with code number >= 128 are system dependent. Character
literals of printable characters are given by enclosing the symbol
between single quotes, as in 'A'. The function chr translates integer
values from 0 to 255 into the corresponding characters. In this way,
also the non-printable characters can be represented. For example,
chr(7) is the bell character (which usually generates a beep when
output to the terminal), whereas chr(65) is the same as 'A'.
Remark: In ARIBAS, 'A' and "A" is not the same object (in contrast
to Modula-2). The latter is a string of length 1.

(*----------------------------------------------------------------*)
string

The data type string comprises sequences of characters and serves
to represent text. String literals are given by enclosing the
character sequence between double quotes, as in "ABCD". A problem
arises if the string itself contains a double quote, i.e. the
character '"'. In this case one can use the function concat
(see function reference). For example, concat("AB",'"',"CD")
is the 5 character string consisting of the characters
'A', 'B', '"', 'C', 'D'. In this way one can also construct
strings which contain control characters, for example
concat("AB",chr(7),"CD").
One can access a single character of a string in the following way:

==> s := "abcdef";
    s[3].
-: 'd'

The indexing begins with 0, the last character of a string has
index n-1, where n is the length of the string.

(*----------------------------------------------------------------*)
byte_string

A byte_string consists of a finite sequence of bytes (a byte is an
8-bit integer x, 0 <= x < 256). This is essentially the same as the
Pascal notion of packed array of byte. A byte_string literal is
written in the form $XXXXXX....XX, where XX stands for the hexadecimal
representation of a byte. The underscore _ may be used for subdivision
to increase readability. For example,

==> B := $0080_12FF78.
-: $0080_12FF_78

defines a byte_string of length 6. One can access the components of
the byte_string in the same way as in the case of strings.

==> B[1].
-: 128

==> B[3].
-: 255

byte_strings can be written to binary files and read from binary
files (functions write_block and read_block, see function reference).
Thus byte_strings serve for data exchange between ARIBAS and the
outside world. There exist transformation functions from integers
to byte_strings and vice versa (functions byte_string, integer
and cardinal, see function reference).

(*----------------------------------------------------------------*)
gf2nint

gf2nint is the data type of elements of the fields GF(2**n)
of characteristic 2. These fields are supported directly by
ARIBAS. To be able to do arithmetic in GF(2**n), the field 
must be initialized by the command 

==> gf2n_init(n).

If no initialization is done, the field GF(2**8) is used
by default. The admissible range for the degree n of the field
extends from 2 to an implementation dependend limit, which
can be queried with the function max_gf2nsize() and which is
typically about 4000. The field GF(2**n) is represented as
GF(2)[X]/(f(X)), where f(X) is an irreducible polynomial of
degree n. The elements of GF(2**n) are represented by polynomials
of degree < n with coefficients 0 or 1, i.e. by bitvectors
of length <= n. Literals of data type gf2nint are marked by the 
prefix 2x, followed by the hexadecimal representation of this
bitvector. For example, in the field GF(2**8), the element
2x8A represents the class of the polynomial

    X**7 + X**3 + X,

since 2**7 + 2**3 + 2 = 138 = 0x8A. Also binary and octal
representations are admissible; these are marked with the
prefixes 2y and 2o respectively. For example,

    2x8A = 2y10001010 = 2o212.

The zero element of GF(2**n) is 2x0 = 2y0 = 2o0; the unit element
is 2x1 = 2y1 = 2o1.
For elements of data type gf2nint the following oprations are
available:

    x + y, x*y, x/y

Addition, multiplication, division (denominator must be different
from zero). Since we are in characteristic 2, subtraction x-y
is the same as addition.

	x**n

Exponentiation: x is a gf2nint, n an integer. The exponent may
be negative. In this case x must be different from zero.
x**-1 is the same as 2x1/x.

See also the description of the functions

    gf2nint(x: integer): gf2nint;
    integer(x: gf2nint): integer;
    max_gf2nsize(): integer;
    gf2n_init(deg: integer): integer;
    gf2n_fieldpol(): integer;
    gf2n_degree(): integer;
    gf2n_trace(z: gf2nint): integer;

in the function reference.

(*----------------------------------------------------------------*)
array of Type

The array is a structured data type, consisting of finite
sequences of components of a given (but arbitrary) data type Type.
Array literals are given by a comma separated list of its
components. The list is enclosed between a pair of parentheses
( and ), for example
        vec := (37, 41, -9).
However, for arrays of length 1, braces must be used.
        vec1 := {37}.
The expression (37) is interpreted by ARIBAS as the number 37.
One may use braces instead of parentheses also for arrays of length > 1.
The components of an array vec can be accessed as
        vec[i]
where 0 <= i < length(vec).

Besides accessing single components, one can also access whole
subarrays. If vec is an array, then
        vec[n1..n2]
denotes the subarray consisting of all components vec[i]
with n1 <= i <= n2.
Example:

==> vec := (1,2,3,4,5,6,7,8,9,10).
-: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

==> vec[2..6].
-: (3, 4, 5, 6, 7)

The upper bound may be omitted:
vec[n1..] is equivalent to vec[n1..length(vec)-1].

Subarrays may also appear at the left hand side of assignments
and thus allow the simultaneous modification of several components.
Example: Let vec the above array. Then

==> vec[2..6] := (0,-1,-2,-3,-4).
-: (0,-1,-2,-3,-4)

changes vec to

==> vec.
-: (1, 2, 0, -1, -2, -3, -4, 8, 9, 10)

The subbarray feature applies also analogously to strings and
byte_strings.

(*----------------------------------------------------------------*)
stack

There is a predefined data type stack in ARIBAS. Functions
operating on stacks are stack_push, stack_pop, stack_top, stack_reset,
stack_empty, stack2array and length (see function reference).
Stacks can be used for example to temporarily store objects
(of arbitrary data type) if the total number is not known in
advance (e.g. the prime factors of an integer).

(*----------------------------------------------------------------*)
file

Data type file: ARIBAS supports text files and binary files.
See function reference, subsection In/Out.

(*----------------------------------------------------------------*)
function

Data type function: User defined functions and builtin functions
(with the exception of write, writeln) can be assigned to variables
and used as arguments of other functions.
Example:

==> F := (cos,sin,tan).
-: (cos, sin, tan)

==> for i := 0 to length(F)-1 do
        fun := F[i];
        writeln(fun(pi/6));
    end.
0.866025404
0.500000000
0.577350269

(*----------------------------------------------------------------*)
record, pointer

Besides the builtin data types, one can define new data types,
using records and pointers. See below section 6) Type definitions,
records, pointers

(*----------------------------------------------------------------*)

4) OPERATORS, EXPRESSIONS
=========================

The assignment operator :=
--------------------------
An assignment has the following form

        <variable> := <expr>

The expression <expr> is evaluated and assigned to <variable>. In general,
<variable> is simply an identifier, but may also be an array component,
a subarray or a record field.
Examples:

==> vec := (1,2,3,4).
-: (1, 2, 3, 4)

==> vec[2] := 10.
-: 10

==> vec.
-: (1, 2, 10, 4)

The data type of <expr> must be assignment compatible to the
data type of <variable>. On top level (i.e. outside function definitions),
<variable> may also be an undeclared identifier. Then the assignment is
implicitly also a declaration of a variable of the proper data type.
The assignment as a whole is an expression, whose value is the
value of <expr>. The assignment operator is right associative (as in C).
Therefore multiple assignments like the following are possible:

         <variable1> := <variable2> := <expr>

In assignments of arrays (e.g. vec1 := vec2) a new copy of the
right hand side (vec2 in the example) is constructed and assigned
(unlike the situation in C, this is not an assignment of pointers).
Arrays of different lengths are assignment compatible.
Examples:

==> vec1 := (1,2,3).
-: (1, 2, 3)

==> vec2 := (4,5,6,7).
-: (4, 5, 6, 7).

Now, the assignment vec1 := vec2 is possible:

==> vec1 := vec2.
-: (4, 5, 6, 7).

If we change vec2,

==> vec2[2] := -1.
-: -1

the value of vec1 is untouched.

==> vec2.
-: (4, 5, -1, 7)

==> vec1.
-: (4, 5, 6, 7)


Simultaneous Assignment
-----------------------

(<var1>,<var2>,...,<varn>) := (<expr1>,<expr2>,...,<exprn>)

The expressions <expr1>,<expr2>,...,<exprn> are evaluated
and then assigned to the variables <var1>,<var2>,...,<varn>
respectively. For example, this can be used to swap two
variables:

==> x := pi.
-: 3.14159265

==> y := exp(1).
-: 2.71828183

==> (x,y) := (y,x).
-: (2.71828183, 3.14159265)

==> x.
-: 2.71828183

==> y.
-: 3.14159265

Without simultaneous assignment, you would have to use a temporary
variable:

==> temp := x; x := y; y := temp.

As another example, consider the following compact code
to calculate the Fibonacci numbers.

==> function fibo(N: integer): integer;
    var
        u,v,k: integer;
    begin
        (u,v) := (1,0);
        for k := 1 to N do
            (u,v) := (v,u+v);
        end;
        return v;
    end.
-: fibo

==> fibo(100).
-: 3_54224_84817_92619_15075

A more complicated example of swapping:

==> vec := (1,2,3,4,5).
-: (1, 2, 3, 4, 5)

==> (vec[0..2],vec[3..4]) := (vec[2..4],vec[0..1]).
-: ((3, 4, 5), (1, 2))

==> vec.
-: (3, 4, 5, 1, 2)


Arithmetical operators
----------------------
        +, -, *, **, /, div, mod

+ and - are unary operators (if used as prefix) and binary operators
(if used infix). As binary operators, they are left associative.
The operands may be integers or reals. If one of the operands is
an integer and the other operand is a real, an implicit conversion
of the integer to a real number takes place.

* denotes multiplication. It is a binary left associative infix
operator, which may also be applied to integers or reals.

** is the exponentiation operator. It is a binary, right associative
infix operator. The operands may be integers or reals. If in the
expression x**y the basis x is an integer and the exponent y is a
non-negative integer, the result is again an integer; in all other
cases the result is real. If the exponent is negative, the basis
must be non-zero. If the exponent is a real, the basis must be
positive.

The binary, left associative infix operator / denotes floating
point division. The operands may be integers or reals; the result
is always a real. Division by zero is not allowed.

div and mod are binary, left associative infix operators which may
be applied only to integers and give an integer result.
x div y returns the greatest integer less than or equal to x/y.
The operator mod is defined by the equation
        x = (x div y) * y + (x mod y)
The divisor y must be non-zero.

Vector operations
-----------------
The operators +, -, *, div and mod may also be applied to vectors,
namely in the following forms:

-vec, vec1 + vec2, vec1 - vec2, 
lambda*vec, vec*lambda

Here vec, vec1, vec2 are arrays of integers or reals and lambda
is an integer or a real. The last two forms are the multiplication
of the vector vec by the scalar lambda. vec1 and vec2 need not 
have the same length; the shorter one is implicitely expanded to the
greater length by appending zeroes. Example:

    ==> -(1,1) + pi*(1,2,3).
    -: (2.14159265, 5.28318531, 9.42477796)

vec/lambda

lambda must be a number /= 0. Divides all components of vec by lambda.
Example:

    ==> (100, 200, 300, 400)/1.95583.
    -: (51.1291881, 102.258376, 153.387564, 204.516752)

vec div N, vec mod N

Here vec must be an array of integers and N an interger /= 0. If
vec = (x1,x2,...,xn), the result is the vector with components
xk div N resp xk mod N. Examples:

    ==> (100, 200, 300) div 12.
    -: (8, 16, 25)

    ==> (100, 200, 300) mod 12.
    -: (4, 8, 0)

Relational operators
--------------------
        =               (equal)
        /= or <>        (not equal)
        <               (less)
        <=              (less or equal)
        >               (greater)
        >=              (greater or equal)

All relational operators are binary infix operators and return
a boolean value (true or false). The operators = (equal) and
/=, <> (two synonyms for 'not equal') may be applied to operands
of arbitrary data types. With the operators <, <=, >, >= one can
compare numbers (integer or real). They can also be applied to
two characters or to two strings. In the latter cases the comparision
is done according to the ASCII codes of the characters.
Example:

==> "Arthur" < "Anderson".
-: false

Boolean operators
-----------------
        not, and, or

not is a unary prefix operator, whereas and, or are binary infix
operatars. They may be applied to boolean arguments. The evaluation
of the arguments of the binary operators and, or proceeds from left
to right and is stopped as soon as the result is determined.
Thus an expression like

        u > 0 and v/u < 1

is admissible, which would generate an error for u=0 if always both
arguments of the and-operator were evaluated.

Function calls
--------------
In ARIBAS, a function call has the form

        foo(arg1,...,argn)

where foo is the name of the function and arg1,...,argn is a comma
separated list of the arguments, enclosed in parentheses. One
must use parentheses even if the function has an empty argument
list (as in the programming language C). The result of a function
call can be used in other expressions, for example in arithmetical
operations or assignments, as in

        sin(pi/3)**2

        x := exp(2)

As in C, ARIBAS allows to ignore the result of a function call
and to call a function only for its side effects.

Operator precedence
-------------------
In complex expressions sometimes parentheses may be omitted by
observing the precedence of operators.
The following is a list of the various classes of operators according
to decreasing binding force.

1. exponentiation operator
2. unary minus and unary plus
3. multiplication and division operators *, /, div, mod
4. binary plus and binary minus
5. relational operators
6. boolean operator not
7. boolean operators and, or
8. assignment operator

For example,

        bvar := not x < y and y < z+u

is the same as

        bvar := ((not (x < y)) and (y < (z+u)))

(*---------------------------------------------------------------*)

5) VARIABLE DECLARATIONS
========================

Variables in ARIBAS can be created at top level by assignments of
the form
        <identifier> := <value>
If <value> is a literal of a certain data type, then the <identifier>
becomes a variable of the same data type, initialized by this <value>.
But <value> may also be an expression evaluating to an element of
a certain data type. For example, the following assignments create
two variables str1, str2 of data type string.

        str1 := "ABCDE";
        str2 := itoa(2**31 - 1);

Variables can also be created by explicit variable declarations.
Inside function definitions, declarations of local variables are
obligatory.

A global (i.e. top level) variable declaration has the following form:

var
    <identifier_list1>: <type_1>;
    ...
    <identifier_listn>: <type_n>;
end

Variable declarations inside function definitions are similar, only
the symbol end is missing. It is replaced by the symbol begin marking
the start of the function body.
Here <identifier_listk> is a comma separated list of identifiers
(the variable names). <type_k> is a type specifier like
        integer
        real
        boolean
        char
        stack
        file
or a string, array, record or pointer type, which will be discussed later.
Example:

==> var
        n,m: integer;
        x: real;
        c1,c2: char;
        st: stack;
    end.
-: var

After this variable declaration there exist integer variables n, m,
a real variable x, two character variables c1, c2, and a stack
variable st.
In ARIBAS, a variable declaration also initializes the variables.
Integers are initialized by 0, reals by 0.0, characters by ' '
(the space character) and stacks by the empty stack. The default
initializations can be changed using assignments in the variable
declaration, as in the following example:

==> var
        n := 17;
        x := 3.2;
        ch := 'A';
    end.
-: var

In this case the data types of the variables are derived from the
initial values.

Arrays, strings and byte_strings may be declared with or without
length specification. The declaration with lengths is as in the
following example:

==> var
        str: string[4];
        bb: byte_string[8];
        vec: array[10] of real;
    end.
-: var

This declaration creates a string str of length 4 (consisting of 4
space characters), a byte_string of length 8 (consisting of 8 zero
bytes) and an array of reals of length 10, initialized with the
elements 0.0.
Please note that in ARIBAS strings, byte_strings and arrays of
different length are assignment compatible. This implies, that
a subsequent assignment

==> str := concat("**",str,"__").
-: "**    __"

is possible.
If the length specification is omitted, strings or arrays of
length 0 are created.

==> var
        str: string;
        bb: byte_string;
        vec: array;
    end.
-: var

==> str.
-: ""

==> bb.
-: $

==> vec.
-: ()

Also in this case, subsequent assignments of strings or arrays
of positive length to these variables are allowed.

The length specifications of arrays (strings, byte_strings) are not
required to be constants. Also expressions evaluating to non-negative
integers are admissible. Example:

==> n := 5.
-: 5

==> var
        vec: array[2*n+1];
        mat: array[n] of array[n];
    end.
-: var

==> vec.
-: (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

==> mat.
-: ((0, 0, 0, 0, 0), (0, 0, 0, 0, 0), (0, 0, 0, 0, 0), (0, 0, 0, 0, 0), (0, 0,
0, 0, 0))

If the data type of an array is not specified, array of integer
is assumed.

Constant declarations
=====================
Constant declarations can be made (like variable declarations)
at top level or inside function definitions. A top level
constant definition has the form

const
    Identifier1 = Val_1;
           ....
    Identifiern = Val_n;
end.

For constant declarations inside function definitions, the symbol
end is omitted; the declarations ends either with the beginning
of the variable declaration (var) or the start of the function
body (begin).

The values Val_k may be literals or arithmetic or functional
expressions involving builtin functions or functions defined by
the user before the constant declaration.
Example:

==> const
        Bound1 = 2**16 - 1;
        Bound2 = round(exp(10));
    end.
-: const

If one tries to assign a value to a constant, an error message
is generated.

==> Bound1 := 2**15.
:= : non-constant symbol expected: Bound1
-: error

In order to use Bound1 again as a variable (on top level),
make_unbound must be used.

==> make_unbound(Bound1).
-: true

Now the assignment

==> Bound1 := 2**15.
-: 32768

is possible.

(*----------------------------------------------------------*)

6) TYPE DEFINITIONS, RECORDS, POINTERS
======================================

In ARIBAS, the user can define her own data types.
The easiest case is to define new names for composite data types.
For example, if you have to work a lot with 3-dimensional vectors
and 3x3-matrices with real components, you can make the top level
type declaration

    type
        vector = array[3] of real;
        matrix = array[3] of vector;
    end;

After this type definition you can use these new types in variable
declarations at top level or inside function definitions, for example

    var
        A: matrix;
        x,y: vector;
    end;

By the way, if this variable declaration occurs immediately after
the type declaration, the two declarations can be merged to

    type
        vector = array[3] of real;
        matrix = array[3] of vector;
    var
        A: matrix;
        x,y: vector;
    end;

The new types can also be used in the formal parameter lists
of function definitions or as result types of functions.
For example, the following function calculates the tensor
product of two vectors:

    function tprod(x,y: vector): matrix;
    var
        A: matrix;
        i,j: integer;
    begin
        for i := 0 to 2 do
            for j := 0 to 2 do
                A[i][j] := x[i]*y[j];
            end;
        end;
        return A;
    end.

In the above examples, the new types were only synonyms for already
existing data types (vector for array[3] of real and matrix for
array[3] of array[3] of real), so one could do also without them.
Substantially new data types can be constructed using records
and pointers.

Records
-------
A record is a structure consisting of several components which
may have different data types. These components are the so called
record fields, which can be accessed by field identifiers.
For example, consider the following top level type and variable
declaration:

==> type
        item = record
            key: integer;
            name: string;
            data: byte_string;
        end;
    var
        X,Y: item;
    end.
-: var

This defines a new data type item. Such an item has three components:
1) An integer in the field key, 2) a string in the field name and
3) a byte_string in the field data. Also, two variables X, Y of type
item have been created. Their fields are X.key, X.name, X.data
resp. Y.key, Y.name and Y.data. They have been initialized by
the default initializations of the types integer, string and
byte_string, namely 0, "" (the empty string) and $ (the byte_string
of length zero)

==> X.
-: &(0, "", $)

In ARIBAS the external representation of a record is a comma
separated list of its elements enclosed within &( and ).
We can fill the fields of X with new values, for example

==> X.key := 3; X.name := "gamma"; X.data := $AABB_80FF.
-: $AABB_80FF

Now

==> X.
-: &(3, "gamma", $AABB_80FF)

One can work with the fields of X as with other variables of type
integer, string or byte_string, e.g.

==> X.key ** 4.
-: 81

==> toupper(X.name).
-: "GAMMA"

==> X.data[2].
-: 128

Records, like arrays, can be assigned as a whole. For example, after

==> Y := X.
-: &(3, "gamma", $AABB_80FF)

the record Y has the same content as the record X.

Records can also be declared in variable declarations (at top level
or inside function definitions) without previous type declarations.
For example

==> var
        R1, R2: record x,y,w,h: integer; end;
    end.
-: var

declares two records R1, R2 (of anonymous type) with four integer
fields x,y,w,h.

Pointers
--------
Dynamical data structures can be constructed using pointers.
In ARIBAS only pointers to records exist. The syntax is as in
Modula-2. For example, a linked list of strings can be defined
using the following type declaration.

==> type
        list = pointer to item;
        item = record
            name: string;
            next: list;
        end;
    end.
-: type

(Note that in ARIBAS type declarations are allowed only at top level;
however the defined types can afterwards also be used inside functions.)
If after this type definition a variable of type list is defined,

==> var
        LL: list;
    end.
-: var

LL is a pointer which points to nowhere (in ARIBAS it is initialized
with the value nil).

==> LL.
-: nil

We must use the procedure new to create a record (of type item) to
which LL points.

==> new(LL).
-: &("", nil)

The return value of new is the newly created record to which LL points.
This record is now accesible as LL^.

==> LL^.
-: &("", nil)

We can fill the name field of this item for example by

==> LL^.name := "mueller".
-: "mueller"

Now

==> LL^.
-: &("mueller", nil)

whereas

==> LL.
-: <PTR^30010045>

(This external representation of the pointer cannot be used for
assignments.)
To append another item on top of the list LL of length 1, one can
proceed as follows.

==> var
        ptr: list;
    end.
-: var

==> new(ptr).
-: &("", nil)

==> ptr^.name := "bauer".
-: "bauer"

==> ptr^.next := LL.
-: <PTR^30010045>

==> LL := ptr.
-: <PTR^3001007E>

Now LL is a list of length 2; we have

==> LL^.name.
-: "bauer"

==> LL^.next^.name.
-: "mueller"

Following Oberon (the successor to Modula-2), ARIBAS allows
an abbreviation in dereferencing pointers: If Ptr is a pointer
to a record and xx is a field identifier of this record, then
Ptr^.xx may be abbreviated by Ptr.xx.
So our above examples could have been written

==> LL.name.
-: "bauer"

==> LL.next.name.
-: "mueller"

Note however the difference

==> LL.next.
-: <PTR^30010045>

==> LL.next^.
-: &("mueller", nil)


7) CONTROL STRUCTURES
=====================

if then elsif else end
while do end
for to by do end
break

(*-----------------------------------------------------------------*)

The if-statement
----------------

if <bool expr> then
        <statement-list>
elsif <bool expr> then
        <statement-list>
else
        <statement-list>
end;

There may be more (or zero) elsif parts. The else part may also
be absent.

Example:

function sign(x: real): integer;
begin
    if x > 0 then
        return 1;
    elsif x < 0 then
        return -1;
    else
        return 0;
    end;
end;

(*-----------------------------------------------------------------*)

The while-loop
--------------
while <boolean expr> do
    <statement-list>
end;

If <boolean expr> evaluates to true, the statement sequence
<statement-list> is executed (this can change the value of
<boolean expr>). If <boolean expr> is still true, <statement-list>
is executed again. This is repeated until <boolean expr> becomes
false or the while loop is left by a return or a break statement.

(*-----------------------------------------------------------------*)

The for-loop
------------

for <runvar> := <start> to <end> do
    <statement-list>
end;

<runvar> must be an integer variable, <start> and <end> must be
integer expressions. These are evaluated before the for loop is
entered the first time. Then <statement-list> is executed with
<runvar> set to <start>, <start>+1, ..., <end>. If <end> is less
than <start>, <statement-list> is not executed at all and the
for loop is skipped.

for <runvar> := <start> to <end> by <incr> do
    <statement-list>
end;

If there is an additional integer expression <incr>, this expression
is also evaluated before entering the for loop. <incr> must evaluate
to a non-zero integer. If <incr> is positive and <end> >= <start>,
<statement-list> is executed for <runvar> = <start> + k*<incr>,
k = 0,1,... as long as <start> + k*<incr> <= <end>.
If <incr> is negative, <statement-list> is executed for
<runvar> = <start> + k*<incr>, k = 0,1,... as long as
<start> + k*<incr> >= <end>.

Example:

==> for k := 11 to 0 by -2 do
        write(k,"; ");
    end.

produces the output
    11; 9; 7; 5; 3; 1;

(*-----------------------------------------------------------------*)
break

The command break causes (as in C) the immediate exit from a
for or a while loop.

Example:

==> for x := 10**7+1 to 10**8 by 2 do
        if factor16(x) = 0 then break; end;
    end;
    x.
-: 10000019

(*-----------------------------------------------------------------*)
In ARIBAS there is no  repeat .. until  loop. Such a loop can always
be substituted by a suitable while loop.

(*-----------------------------------------------------------------*)

8) FUNCTION REFERENCE
=====================

a) Functions for integer arithmetic
===================================

max_intsize
set_printbase
get_printbase
sum
product
divide
odd
even
abs
max
min
inc
dec
gcd
gcdx
isqrt
factorial
mod_coshmult
mod_pemult
mod_inverse
jacobi
factor16
prime32test
rab_primetest
rho_factorize
cf_factorize
qs_factorize
ec_factorize

bit operations

(*----------------------------------------------------------------*)
max_intsize(): integer;

Returns the maximum number of decimal places of integers
supported by ARIBAS. This number depends on the options
when ARIBAS was compiled and is typically between 20000
and 64000.

(*----------------------------------------------------------------*)
set_printbase(b: integer): integer;

The integer b must be one of the numbers 2, 8, 10, 16. The effect
of this function is that subsequent output of integers is done
in base b representation. Return value is the newly set print base.
(If b is not admissible, the old print base is not altered.)
Example:

==> set_printbase(8).
-: 0o10

==> 255.
-: 0o377

(*----------------------------------------------------------------*)
get_printbase(): integer;

Returns the print base which is currently used.

(*----------------------------------------------------------------*)
sum(vec: array of integer): integer;
sum(vec: array of real): real;
product(vec: array of integer): integer;
product(vec: array of real): real;

Returns the sum resp. the product of all components of vec.

(*----------------------------------------------------------------*)
divide(x,y: integer): array[2];

Returns a pair (q,r) of integers such that 
	q = x div y  and  r = x mod y. 
The argument \cc{y} must be non-zero.
Example:

==> divide(100,7).
-: (14, 2)

==> divide(-100,7).
-: (-15, 5)

(*----------------------------------------------------------------*)
even(x: integer): boolean;
odd(x: integer): boolean;

Tests if x is even resp. odd.

(*----------------------------------------------------------------*)
max(x1,...,xn: integer): integer;
max(x1,...,xn: real): real;
min(x1,...,xn: integer): integer;
min(x1,...,xn: real): real;

Returns the maximum (resp. minimum) of the arguments x1,...,xn.

(*----------------------------------------------------------------*)
max(vec: array of integer): integer;
max(vec: array of real): real;
min(vec: array of integer): integer;
min(vec: array of real): real;

Returns the maximum (resp. minimum) of all components of vec.

(*----------------------------------------------------------------*)
abs(x: integer): integer;
abs(x: real): real;

Returns the absolute value of x.

(*----------------------------------------------------------------*)
inc(var x: integer [; delta: integer]): integer;

Increases the integer variable x by delta (by default delta = 1)
und returns the increased value of x. Functionally equivalent to
x := x + delta.

(*----------------------------------------------------------*)
dec(var x: integer [; delta: integer]): integer;

Decreases the integer variable x by delta (by default delta = 1)
und returns the decreased value of x. Functionally equivalent to
x := x - delta.

(*----------------------------------------------------------*)
gcd(x1,...,xn: integer): integer;

Returns the greatest common divisor of the integers x1,x2,...,xn.
For n = 1, one has gcd(x) = abs(x); if n = 0, then gcd() = 0.

gcd(vec: array of integer): integer;

Returns the greatest common divisor of all components of vec.

(*----------------------------------------------------------*)
gcdx(x,y: integer; var u,v: integer): integer;

Returns the greatest common divisor d of x, y.
At the same time, the variables u and v are set to values
such that
        d = u*x + v*y
Example:

==> gcdx(5,17,u,v).
-: 1

==> (u,v).
-: (7, -2)

(*----------------------------------------------------------*)
mod_inverse(x, mm: integer): integer;

If x and mm are reatively prime, this function returns the inverse
of x modulo mm. Otherwise the return value is 0.
Examples:

==> mod_inverse(17,100).
-: 53

==> mod_inverse(18,100).
-: 0

(*----------------------------------------------------------*)
isqrt(x: integer): integer;

x must be a non-negative integer. Returns the greatest integer
y such that y*y <= x.

(*----------------------------------------------------------*)
factorial(n: integer): integer;

n must be a non-negative integer. Returns the factorial of n,
(usually denoted by n!). Example:

==> factorial(8).
-: 40320

(*----------------------------------------------------------*)
mod_coshmult(x,s,mm: integer): integer;

If x is an integer and xi a number such that cosh(xi) = x,
then cosh(s*xi) is an integer for all natural numbers s.
The function returns this number modulo mm.
The result can be obtained by the following recursively
defined (Lucas) sequence:
        a(0) := 1;
        a(1) := x;
        a(k+2) := 2*x*a(k+1) - a(k);
The result is the number a(s) mod mm.
This function is useful to implement the (p+1)-factorization method.

(*----------------------------------------------------------*)
mod_pemult(x,s,a,mm: integer): array[2] of integer;

Let pe be the Weierstrass pe-function on the elliptic curve E(a)
        y*y = x*x*x + a*x*x + x
and let xi be a point on the curve with pe(xi) = x. The s*xi is
a point of E(a) (with respect to the abelian group structure on the
elliptic curve). If s*xi is not a pole of pe, then pe(s*xi) = u/v
is a rational number. (We may suppose that u and v are relatively
prime.) If v is relatively prime to mm, the function
mod_pemult(x,s,a,mm) returns (z,1), where z is an integer
satisfying z*v = u mod mm (i.e. we have z = u/v in Z/mmZ).
If v and mm have a greatest common divisor d > 1, the function
returns (d,0). If s*xi is a pole of pe, the return value is (mm,0).
This function is useful for the factorization with elliptic
curves.

(*----------------------------------------------------------*)
factor16(x [,x0 [,x1]]: integer): integer;

factor16(x) seeks a prime divisor p of x with p < min(2**16,x).
If such a prime divisor exists, the smallest one is returned.
Otherwise the function returns 0. If the optional arguments x0
resp. x0 and x1 are supplied, only prime divisors p satisfying the
additional conditions p >= x0 resp. x0 <= p <= x1 are considered.
Examples:

==> factor16(2**32 + 1).
-: 641

==> factor16(2**32 + 1, 642).
-: 0

(*----------------------------------------------------------*)
prime32test(x: integer): integer;

Tests if abs(x) is a prime number < 2**32.
If this is true, the function returns 1.
If abs(x) < 2**32, but is not prime, 0 is returned.
For abs(x) >= 2**32, the function returns -1.

(*----------------------------------------------------------*)
rab_primetest(x: integer): boolean;

Performs the Rabin probabilistic prime test. If the function
returns false, the number is certainly composite. A 'random'
number x, for which factor16(x) = 0 and rab_primetest(x) = true
is prime with high probability. An exception are numbers constructed
purposely to fool the Rabin prime test. But also for these
numbers the error probability is less than 1/4.
To decrease the error probability, one can repeat the test
several times.

(*----------------------------------------------------------*)
next_prime(x: integer): integer;

Calculates the smallsest prime p >= x. If x > 2**32, p is
only a prime with high probabilty; it has no prime divisors < 2**16
and has passed 10 strong pseudo prime tests with random bases.

(*----------------------------------------------------------*)
jacobi(a,m: integer): integer;

Returns the Jacobi symbol of a over m. The module m must be
an odd number; a may be an arbitrary integer, the result depends
only on the residue class of a modulo m. If a and m are not
relatively prime, the return value is 0, otherwise it is
1 or -1. If p is an odd prime and a not a multiple of p, then
jacobi(a,p) = 1 if and only if a is a quadratic residue
modulo p.

(*----------------------------------------------------------*)
rho_factorize(x:integer [; b: integer]): integer;

Tries to factorize x using Pollard's rho-algorithm. The optional
argument b is a bound for the maximal number of steps (default
value b = 2**16). If the algorithm finds a factor, it is returned,
in case of failure the return value is 0. The number x should
be free of small prime factors (e.g. < 1000). Then, if x has
a prime factor p < sqrt(x), the algorithm will in general find
a factorization of x if b is a small multiple of sqrt(p).
If the return value y is > 1 and < x, it is certainly a factor
of x, but not necessarily prime.

(*----------------------------------------------------------*)
cf_factorize(x: integer [; mm: integer]): integer;

Tries to factorize x using the Morrison-Brillhart continued
fraction factorization algorithm. The run time does not depend
on the size of the prime factors of x. (Hence, if it is known
that x has small prime factors, another factorization method
should be used.) If the period of the continued fraction of
sqrt(x) is too short, the factorization will fail. In this case
one should supply a second argument, which must be an integer
mm with 1 <= mm < 1024. Then the continued fraction expansion
of sqrt(mm*x) will be used.

(*----------------------------------------------------------*)
qs_factorize(x: integer): integer;

Tries to factorize x using the multiple polynomial quadratic
sieve factorization algorithm. The run time does not depend
on the size of the prime factors of x. (Hence, if it is known
that x has small prime factors, another factorization method
like rho_factorize should be used.) In general, qs_factorize
is faster than cf_factorize.

(*----------------------------------------------------------*)
ec_factorize(x: integer[; m: integer]): integer;

Tries to factorize x by the elliptic curve method. The optional 
argument m is a bound for the number of elliptic curves used. 
If the algorithm finds a factor, it is returned, in case of 
failure the return value is 0.  If the return value y is > 1, 
it is certainly a factor of x, but not necessarily prime.

ec_factorize(x: integer; pbounds: array[2] [; m: integer]): integer;

You may explicitely prescribe the prime bound and the bigprime bound 
by the second argument in form of a 2-dimensional vector  
pbounds = (bound1,bound2). The constant bound1 must be < 2**16 
and bound2 < 2**24. The third optional argument m is the maximal 
number of elliptic curves used. In the following example the 8th 
Fermat number is factorized.

==> f8 := 2**256 + 1. 
-: 115_79208_92373_16195_42357_09850_08687_90785_32699_84665_64056_40394_ 
57584_00791_31296_39937 
 
==> q := ec_factorize(f8,(8000,64000)). 
 
EC factorization, prime bound 8000, bigprime bound 64000 
working .:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.: 
factor found with curve parameter 11693151 and bigprime 40177 
 
-: 1_23892_63615_52897 
 
==> p := f8 div q. 
-: 93_46163_97153_57977_76916_35581_99606_89658_40512_37541_63818_85802_80321 
 
==> rab_primetest(q). 
-: true 
 
==> rab_primetest(p). 
-: true

The algorithm ec_factorize is best suited for large integers which 
have a relatively small prime factor (like f8).
One can forbid the execution of the big prime variation by setting 
the second component in the vector pbounds equal to 0.

==> ec_factorize(2**101-1,(4000,0),200). 
 
EC factorization with prime bound 4000  
working .......................................................... 
factor found with curve parameter 11017293 and prime bound 2816 
 
-: 743_23392_08719

ec_factorize(x, [pbounds, m,] 0): integer;

With a last argument 0, the progress report is suppressed 
and the algorithm works quietly.

==> ec_factorize(2**67-1,0). 
-: 193707721

(*----------------------------------------------------------*)
gfp_sqrt(p,x: integer): integer;

p must be an odd prime and x an integer which is a square modulo p, 
i.e. jacobi(x,p) /= -1. The function returns a square root of 
x modulo p, that is, a square root in the field GF(p).
Example:

==> p := next_prime(10**6). 
-: 1000003 
 
==> x := 10. 
-: 10 
 
==> jacobi(x,p). 
-: 1 
 
==> y := gfp_sqrt(p,x). 
-: 394215 
 
==> y**2 mod p. 
-: 10 

(*----------------------------------------------------------*)

Bit operations for integers

bit_test
bit_set
bit_clear
bit_shift
bit_not
bit_and
bit_or
bit_xor
bit_length

The bit operations can be applied to all integers, positive or negative.
Bit operations refer to the binary representation of integers.
Negative integers are thought to be in two's complement representation,
where the sign bit extends to infinity at the left hand side. For example,
the bit pattern of the two's complement representation of -1 is

      ......11111111111111111111111111111111

(*----------------------------------------------------------------*)
bit_test(x,n: integer): integer;

Returns 1, if the bit in position n of x is set, otherwise returns 0.
The count of positions begins with 0 (the bit i position n has
weigth 2**n).
For example, bit_test(x,0) = 1 if and only if x is odd.

(*----------------------------------------------------------------*)
bit_set(x,n: integer): integer;

Sets the bit in position n of the integer x equal to 1 and returns
the modified integer. Example:

==> bit_set(16,2).
-: 20

(*----------------------------------------------------------------*)
bit_clear(x,n: integer): integer;

Clears the bit in position n of the integer x (i.e. sets it equal
to 0) and returns the modified integer. Examples:

==> bit_clear(20,2).
-: 16

==> bit_clear(-1,0).
-: -2

(*----------------------------------------------------------------*)
bit_shift(x,n: integer): integer;

The number n may be positive, negative or zero. If n >= 0,
bit_shift(x,n) is a shift of the bit representation of x of
n positions to the left (i.e. in direction of more significant
bits); this is equivalent to a multiplication by 2**n.
If n < 0, this is a shift of abs(n) positions to the right
(i.e. in direction of less significant bits); equivalent to
x div 2**abs(n). Examples:

==> bit_shift(-7,3).
-: -56

==> bit_shift(-7,-1).
-: -4

==> bit_shift(-7,-100).
-: -1

(*----------------------------------------------------------------*)
bit_not(x: integer): integer;

Inverts all bits of x. Equivalent to -x-1.

(*----------------------------------------------------------------*)
bit_and(x,y: integer): integer;
bit_or(x,y: integer): integer;
bit_xor(x,y: integer): integer;

Bitwise and, or resp. exclusive or of x and y.
For example, bit_and(x,3) is equivalent to x mod 4.

(*----------------------------------------------------------------*)
bit_length(x: integer): integer;

Returns the smallest natural number n such that abs(x) < 2**n

(*----------------------------------------------------------------*)
bit_count(x: integer): integer;

Returns the number of bits equal to 1 in the binary 
representation of abs(x).
Examples:

==> bit_count(0).
-: 0

==> bit_count(255).
-: 8

==> x := 10001.
-: 10001

==> write(x:base(2)).
100111_00010001
-: 1

==> bit_count(x).
-: 6

==> bit_count(-x).
-: 6

(*----------------------------------------------------------------*)

a1) Functions for arithmetic in GF(2**n)
========================================

gf2n_init
gf2n_fieldpol
gf2n_degree
gf2nint
integer
max_gf2nsize
gf2n_trace

(*----------------------------------------------------------*)

gf2n_init(deg: integer): integer;

Initializes the field GF(2**deg), which is an extension
of degree deg of the field with two elements GF(2).
Return value is an integer f, representing an irreducible
polynomial of degree deg. If the integer f in binary
representation is

    f = sum(a_i * 2**i, i=0,1,...,deg), a_i = 0,1,

then the corresponding polynomial f(X) in GF(2)[X] is

    f(X) = sum(a_i * X**i, i=0,1,...,deg).

The field GF(2**deg) is constructed as GF(2)[X]/(f(X)).
Example:

==> gf2n_init(53).
-: 9_00719_92547_41063

==> write(_:base(2)).
100000_00000000_00000000_00000000_00000000_00000000_01000111
-: 1

In this case the irreducible polynomial serving to construct
the field GF(2**53) is

    f(X) = X**53 + X**6 + X**2 + X + 1.


(*----------------------------------------------------------*)

gf2n_fieldpol(): integer;

Returns the irreducible polynomial defining the field GF(2**n)
which is active at present. The polynomial is represented
by an integer; see description of the function gf2n_init().

(*----------------------------------------------------------*)

gf2n_degree(): integer;

Returns the degree of the field GF(2**n) which is currently active.

(*----------------------------------------------------------*)
gf2nint(x: integer): gf2nint;
integer(x: gf2nint): integer;

Conversion from data type integer to gf2nint and vice versa.

(*----------------------------------------------------------*)

max_gf2nsize(): integer;

Returns the maximal degree of a field GF(2**n) supported by the
present version of ARIBAS.

(*----------------------------------------------------------*)

gf2n_trace(z: gf2nint): integer;

Returns the trace 0 or 1 of an element z in GF(2**n).
The trace of z is 0 if and only if the quadratic equation
x**2 + x = z has a solution x in GF(2**n).

(*----------------------------------------------------------------*)

a2) Polynomials over GF(2)
==========================

gf2X_mult
gf2X_square
gf2X_divide
gf2X_div
gf2X_mod
gf2X_gcd
gf2X_modpower
gf2X_primetest

ARIBAS has several builtin functions dealing with polynomials
over the field GF(2) with two elements 0,1. In these functions,
polynomials are represented by integers. The correspondence
is defined as follows: The integer

    f = sum( ai * 2**i, 0 <= i <= n),  ai = 0,1 

represents the polynomial

    F(X) = sum( ai * X**i, 0 <= i <= n).

For example, 

==> f := 2**7 + 2**6 + 1.
-: 193

represents the polynomial
    F(X) = X**7 + X**6 + 1.  By the way, this polynomial is
irreducible, as can be seen by

==> gf2X_primetest(f).
-: true

Polynomials over GF(2) can be added using the function bit_xor.

==> g := 2**6 + 2**4 + 1.
-: 81

==> h := bit_xor(f,g).
-: 144

==> write(h:base(2)).
10010000
-: 1

This h represents the polynomial X**7 + X**4.

(*----------------------------------------------------------------*)
gf2X_mult(f,g: integer): integer;

Multiplies two polynomials over GF(2) given by the integers f, g. 
Example:

==> f := 2**7 + 2**6 + 1.
-: 193

==> g := 2**6 + 2**4 + 1.
-: 81

==> h := gf2X_mult(f,g).
-: 15505

==> write(h:base(2)).
111100_10010001
-: 1

The product h represents the polynomial

    H(X) = X**13 + X**12 + X**11 + X**10 + X**7 + X**4 + 1.

(*----------------------------------------------------------------*)
gf2X_square(f: integer): integer;

gf2X_square(f) is functionally equivalent to gf2X_mult(f,f), 
but runs faster.

(*----------------------------------------------------------------*)
gf2X_divide(f,g: integer): array[2];
gf2X_div(f,g: integer): integer;
gf2X_mod(f,g: integer): integer;

If f and g are two polynomials over GF(2) and g /= 0,
then there exist polynomials q and r with 
deg(r) < deg(g) such that

    f = q*g + r

The function gf2X_divide(f,g) returns the pair (q,r),
the function gf2X_div(f,g) returns the quotient q)
and gf2X_mod(f,g) returns the remainder r.

(*----------------------------------------------------------------*)
gf2X_gcd(f,g: integer): integer;

Returns the greatest common divisor of the polynomials f,g.
Example:

==> f := 2**10 + 1.
-: 1025

==> g := 2**4 + 1.
-: 17

==> gf2X_gcd(f,g).
-: 5

This shows that the gcd of the polynomials  X**10 + 1 
and  X**4 + 1  is  X**2 + 1.

(*----------------------------------------------------------------*)
gf2X_modpower(g,n,F: integer): integer;

Calculates the n-th power of the polynomial g modulo
the polynomial F.

==> g := 2**5 + 2**4 + 1.
-: 49

==> F := 2**10 + 1.
-: 1025

==> h := gf2X_modpower(g,12345,F).
-: 67

==> write(h:base(2)).
1000011
-: 1

Thus  (X**5 + X**4 + 1)**12345 = (X**6 + X + 1) mod (X**10 + 1).

(*----------------------------------------------------------------*)
gf2X_primetest(f: integer): boolean;

Tests whether the polynomial f is irreducible. Example.

==> f0 := 2**100 + 1.
-: 1_26765_06002_28229_40149_67032_05377

==> for k := 1 to 99 do
		f := f0 + 2**k;
		if gf2X_primetest(f) then
			writeln(k);
			break;
		end;
	end;
	f.
15
-: 1_26765_06002_28229_40149_67032_38145

This shows that the polynomial  X**100 + X**15 + 1  is irreducible
over GF(2).

(*----------------------------------------------------------------*)

b) Functions for real arithmetic and analysis
=============================================

floor
trunc
frac
round
set_floatprec
get_floatprec
decode_float
float
sqrt
exp
log
sin
cos
tan
arctan
arctan2
arcsin
arccos
pi

(*----------------------------------------------------------------*)
floor(x: real): integer;

Returns the greatest integer n <= x. Examples:

==> floor(pi).
-: 3

==> floor(-pi).
-: -4

(*----------------------------------------------------------------*)
trunc(x: real): integer;

If x >= 0, equivalent to floor(x).
For x < 0, trunc is defined by trunc(x) = -trunc(-x)
Examples:

==> trunc(pi).
-: 3

==> trunc(-pi).
-: -3

(*----------------------------------------------------------------*)
frac(x: real): real;

Defined by the equation
        x = trunc(x) + frac(x)

Examples:

==> frac(1.23).
-: 0.230000000

==> frac(-1.23).
-: -0.230000000
(*----------------------------------------------------------------*)
round(x: real): integer;

Rounds x to the next integer n. If x has exactly the distance 1/2
from two integers, rounds to the even integer. Examples:

==> round(pi).
-: 3

==> round(3.5).
-: 4

==> round(2.5).
-: 2

(*----------------------------------------------------------------*)
set_floatprec(bb: integer): integer;
set_floatprec(Floattype): integer;

This function serves to set the precision (in bits) which is
used for subsequent calculations with reals. By default,
a precision of 32 bits is used (corresponding to 9-10
decimal places), but it can be set to several higher values up
to an implementation dependent limit, which can be determined
by the function max_floatprec().
The argument of set_floatprec is either an integer bb, 
indicating the number of bits (which is rounded to the next higher 
available precision, if necessary) or a symbol Floattype, for 
which the following choice is available:

        single_float:    32 bits
        double_float:    64 bits
        long_float:     128 bits

The function returns the new float precision. Example:

==> set_floatprec(double_float).
-: 64

==> sqrt(2).
-: 1.41421356237309505

==> set_floatprec(200).
-: 256

==> 2**0.5.
-: 1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37694_80731_76679_
73799_07324_7846

(*----------------------------------------------------------------*)
get_floatprec(): integer;
get_floatprec(x: real): integer;

In the first form (without arguments), the function returns the current
float precision (in bits, a number between 32 and max_floatprec(),
which is implementation dependent, typically 1024 or 4096).
The default float precision of ARIBAS is 32 bits. If the argument 
is a real number x, the precision of x is returned.
Examples:

==> set_floatprec(50).
-: 64

==> get_floatprec(1/3).
-: 64

==> get_floatprec(pi).
-: 4096

(*----------------------------------------------------------------*)
max_floatprec(): integer;

This function returns the maximum floating point precision
(in bits) which is available in the current implementation
of ARIBAS.
Example:

==> max_floatprec().
-: 4096

The actually used floating point precision can be retrieved
by the function get_floatprec; it can be changed using the 
function set_floatprec.

(*----------------------------------------------------------------*)
decode_float(x: real): array[2] of integer;

For a real number x, the function decode_float(x) returns a pair
(mant, expo) of integers, reflecting the internal representation of x.
The following equation holds:
                x = mant * 2**expo
Example:

==> set_printbase(16).
-: 0x10

==> decode_float(-1/3).
-: (-0xAAAA_AAAA, -0x21)

(*----------------------------------------------------------------*)
float(x: integer [; Floattype]): real;
float(x: real [; Floattype]): real;

Floattype must be one of the symbols single_float, double_float, 
long_float, or an integer bb indicating the desired float precision.  
If this argument is not given, the current float precision is assumed. 
The function transforms the number x to data type real with 
float precision Floattype.
Examples: Suppose that the current float precision is single_float.

==> float(5).
-: 5.00000000

==> x := 1/10;
    y := float(x,long_float).
-: 0.100000000

==> set_printbase(16).
-: 0x10

==> decode_float(x).
-: (0xCCCCCCCC, -0x23)

==> decode_float(y).
-: (0xCCCC_CCCC_0000_0000_0000_0000_0000_0000, -0x83)

(*----------------------------------------------------------------*)
pi

The constant pi is stored internally with the maximal available 
precision (which can be determined by the function max_floatprec()), 
although this is not shown in the printed representation, if the 
currently used precision is smaller.

==> pi.
-: 3.14159265

==> get_floatprec(pi).
-: 4096

Note however, that calculations are always done with the current 
float precision. For example, if the current float precision is 
single_float = 32 bits,

==> x := 1*pi.
-: 3.14159265

==> get_floatprec(x).
-: 32

==> x = pi.
-: false

(*----------------------------------------------------------------*)
sqrt(x: real): real;
exp(x: real): real;
log(x: real): real;
sin(x: real): real;
cos(x: real): real;
tan(x: real): real;
arctan(x: real): real;
arcsin(x: real): real;
arccos(x: real): real;

The functions sqrt (square root), exp, log (natural logarithm),
sin, cos, tan, arctan, arcsin, arccos all expect one real argument
and return a real. If the argument is an integer, it is automatically
transformed to a real.
Example:

==> log(2).
-: 0.693147180

==> set_floatprec(100).
-: 128

==> log(2).
-: 0.69314_71805_59945_30941_72321_21458_17656_81

==> exp(_).
-: 2.00000_00000_00000_00000_00000_00000_00000_0

(*----------------------------------------------------------------*)
arctan2(y,x: real): real;

The two numbers x,y may not be simultaneously 0. The function
returns an angle phi with -pi < phi <= pi, satisfying
        x = r * cos(phi);
        y = r * sin(phi);
where r = sqrt(x*x + y*y).
If x > 0, then arctan2(y,x) = arctan(y/x).

Example:
==> arctan2(1,0).
-: 1.57079633

(*----------------------------------------------------------------*)

c) Random
=========

random
random_seed

(*----------------------------------------------------------*)
random(n: integer): integer;

Returns an integer pseudo random number z with 0 <= z < x.

(*----------------------------------------------------------*)
random(x: real): real;

Returns a real pseudo random number z with 0 <= z < x.

(*----------------------------------------------------------*)
random_seed([s: integer]): integer;

random_seed without an argument returns the present state of the
random generator (which is an integer z with 2**48 <= z < 2**49).

With an integer argument s, the state of the random generator is
set to a value z such that z = s mod 2**48 and 2**48 <= z < 2**49.
In this way one can generate reproducible values of the random
function (for test purposes).

(*----------------------------------------------------------*)

d) Characters, strings
======================

chr
ord
length
concat
toupper
tolower
string_split
substr_index
string_scan
itoa
ftoa
float_ecvt
atoi
atof

(*----------------------------------------------------------*)
chr(n: integer): char;
ord(ch: char): integer;

The function chr generates the character with ASCII-Code n (0 <= n < 256),
ord is the inverse function of chr.
Examples:

==> chr(63).
-: '?'

==> ord('?').
-: 63

(*----------------------------------------------------------*)
length(s: string): integer;

Returns the length of the string s. (The function length can also
be applied to byte_strings, arrays, stacks and files.)

(*----------------------------------------------------------*)
concat(arg0, arg1, ... , argn): string;

The function concat expects one or more arguments which must be
strings or characters. The result is a string which is the
concatenation of all arguments.
Example:

==> concat("string",'_',"split").
-: "string_split"

(*----------------------------------------------------------*)
toupper(str: string): string;
toupper(ch: character): character;

Transforms a string resp. a character to upper case. Only
characters between 'a' and 'z' are affected. All others remain
untouched. Example:

==> toupper("Zapp-up!").
-: "ZAPP-UP!"

(*----------------------------------------------------------*)
tolower(str: string): string;
tolower(ch: character): character;

Transforms a string resp. a character to lower case. Only
characters between 'A' and 'Z' are affected. All others remain
untouched.

(*----------------------------------------------------------*)
string_split(str: string [; sep: string]): array of string;

Splits the string str into one or more parts and returns a vector
whose components are these parts. The splitting uses as separators
the characters contained in the string sep. If the argument sep
is not supplied, SPACE, TAB, CR and NEWLINE are used by default.
Examples;

==> string_split("abc def").
-: ("abc", "def")

==> string_split("abc def;xxx=yyy",";= ").
-: ("abc", "def", "xxx", "yyy")

(*----------------------------------------------------------*)
substr_index(str, str1: string): integer;

Searches for an occurrence of str1 as a substring of str
and returns the position (the count begins with 0). If
str1 does not occur as a substring of str, -1 is returned.
Examples:

==> substr_index("string_split","split").
-: 7

==> substr_index("string_split","Split").
-: -1

Instead of strings, str or str1 may also be byte_strings.

(*----------------------------------------------------------*)
string_scan(str, set: string [; mode: boolean]): integer;

When mode=true (default), searches for the first occurrence of
a character from the string set in the string str and returns
its position. If no character from set occurs in str, -1 is
returned. Example:

==> str := "vec := (1,2,3)".
-: "vec := (1,2,3)"

==> string_scan(str,"+-()").
-: 7

==> string_scan(str,"+-[]").
-: -1

If the string set consists of a single character, then
string_scan(str,set) is equivalent to substr_index(str,set).

When mode=false, searches for the first occurence in str of a 
character which is not in the string set and returns its position.
If no such character is found, -1 is returned. Example:

==> digits := "0123456789".
-: "0123456789"

==> string_scan("123 + 456",digits,false).
-: 3

==> string_scan("123456",digits,false).
-: -1

Instead of strings, str or set may also be byte_strings.

(*----------------------------------------------------------*)
itoa(x: integer [; base: integer]): string;

The integer x is converted to a string, giving the textual
representation of this integer. The second optional argument is
the base to be used, which may have one of the values 2,8,10,16.
By default, base 10 is used.
Example:

==> itoa(1234).
-: "1234"

==> itoa(1234,16).
-: "4D2"

(*----------------------------------------------------------*)
ftoa(x: real): string;

The real number x is converted to a string.
Examples:

==> ftoa(1/239).
-: "0.00418410042"

==> ftoa(pi*10**100).
-: "3.14159265E100"

(*----------------------------------------------------------*)
atoi(s: string [; var len: integer]): integer;

A string s, representing an integer, is transformed to this integer.
The function may be called with an optional second variable argument
len. The function stores in len an integer, which in general is
the length of the string s. If len < length(s), then only the substring
containing the first len characters of s is an admissible representation
of an integer. In particular len=0 indicates a non-admissible string.
Examples:

==> atoi("1234").
-: 1234

==> atoi("0x1234").
-: 4660

==> atoi("-1234 5678",len).
-: -1234

==> len.
-: 5

==> atoi("_1234",len).
-: 0

==> len.
-: 0

(*----------------------------------------------------------*)
atof(s: string [; var len: integer]): real;

A string s, representing a real number, is transformed to this real.
A second optional variable argument len has a meaning analogous
to the function atoi.

(*----------------------------------------------------------*)
float_ecvt(x: real; ndig: integer; var decpos, sign: integer): string;

The real x is transformed to a string of length ndig. The string
contains only digits. The position of the decimal point is returned
in the variable paramenter decpos (decpos < 0 means that the decimal
point is to the left of the beginning of the string). The sign of x
is returned in the variable parameter sign (sign = 0 means x >= 0,
sign /= 0 means x < 0).
float_ecvt is analogous to the UNIX C-function ecvt.

Example:

==> float_ecvt(pi,10,decpos,sign).
-: "3141592654"

==> decpos.
-: 1

==> sign.
-: 0

(*----------------------------------------------------------*)

e) Byte_strings
===============

length
byte_string
string
cardinal
integer

(*----------------------------------------------------------*)
length(b: byte_string): integer;

Returns the length of the byte_string b.

(*----------------------------------------------------------*)
cardinal(b: byte_string): integer;

Transforms a byte_string into a non-negative integer. The components
of the byte_string are considered as the digits of an integer with
respect to base 256, where the leftmost byte of the byte_string
corresponds to the least significant digit. Therefore the function
returns the integer

        sum(b[i] * 256**i: 0 <= i < length(b)).

Example:

==> cardinal($000A).
-: 2560

(*----------------------------------------------------------*)
integer(b: byte_string): integer;

Transforms a byte_string into an integer. The components
of the byte_string are considered as the digits of an integer
with respect to base 256 in two's complement representation.
If len := length(b) and the most significant bit of b[len-1] is not
set, then integer(b) = cardinal(b). But if the most significant bit
of b[len-1] is set, then

        integer(b) = cardinal(b) - 256**len.

Examples:

==> integer($5470).
-: 28756

==> integer($5480).
-: -32684

(*----------------------------------------------------------*)
byte_string(x: integer): byte_string;
byte_string(x: integer; len: integer): byte_string;

byte_string(x) transforms an integer x into a byte_string
of length equal to byte_length(x). It is the inverse function of

        integer(bb: byte_string): integer;

If a second argument len is given and len < byte_length(x),
then the byte_string is truncated and only the len least significant
bytes are retained. If len > byte_length(x), bytes of value 0
(if x >= 0) resp. 0xFF (if x < 0) are added, so that the total
length of the resulting byte_string equals len.
Examples:

==> set_printbase(16).
-: 0x10

==> x := 65111.
-: 0xFE57

==> byte_string(x).
-: $57FE

==> byte_string(-x).
-: $A901

==> byte_string(x,4).
-: $57FE_0000

==> byte_string(-x,4).
-: $A901_FFFF

==> byte_string(x,1).
-: $57

==> 17**17.
-: 0x2C_D843_CB47_6437_0911

==> byte_string(_).
-: $1109_3764_47CB_43D8_2C

(*----------------------------------------------------------*)
byte_string(s: string): byte_string;

Transforms an ordinary (text) string into a byte_string.
The components of the resulting byte_string are the ASCII codes
of the characters of s.
Example:

==> byte_string("string").
-: $7374_7269_6E67

(*----------------------------------------------------------*)
string(b: byte_string): string;

Transforms a byte_string into a text string; inverse function
of byte_string. Be careful if some components of the byte_string
b are codes of non-printable control characters.

(*----------------------------------------------------------*)

Bit operations for byte_strings
-------------------------------
mem_btest
mem_bset
mem_bclear
mem_not
mem_and
mem_or
mem_xor
mem_shift
mem_bitswap
mem_byteswap

All these bit operations, with the exception of mem_btest,
change its first variable argument, which is a byte_string,
and return this modified byte_string.
The return value is only interesting when the functions
are used interactively.

(*----------------------------------------------------------------*)
mem_btest(var b: byte_string; n: integer): integer;

Returns the value 1 or 0 of the bit at position n in the
byte_string b (position is zero based).

(*----------------------------------------------------------------*)
mem_bset(var b: byte_string; n: integer): byte_string;

Sets the bit at position n in the byte_string b to 1
and returns the modified byte_string.

(*----------------------------------------------------------------*)
mem_bclear(var b: byte_string; n: integer): byte_string;

Clears the bit at position n in the byte_string b (i.e. sets it to 0)
and returns the modified byte_string.

(*----------------------------------------------------------------*)
mem_not(var b: byte_string): byte_string;

Inverts all bits in the byte_string b and returns the
modified byte_string.

(*----------------------------------------------------------------*)
mem_and(var b1,b2: byte_string): byte_string;
mem_or(var b1,b2: byte_string): byte_string;
mem_xor(var b1,b2: byte_string): byte_string;

The first byte_string argument b1 is replaced by the bitwise
and (resp. or, xor) of b1 and b2. The modified byte_string b1
is returned.
Note that although the second argument b2 is not modified, it
must be a variable argument (no byte_string literals are
allowed). The reason for this rule is higher efficiency.

(*----------------------------------------------------------------*)
mem_shift(var b: byte_string; n: integer): byte_string;

Performs a bit shift by abs(n) binary digits. if n > 0, the direction
is from least-significant to most-significant, for n < 0, the shift
is in the opposite direction. abs(n) bits are lost. They are replaced
by 0's. Example:

==> bb := $ABCD;
    mem_shift(bb,4).
-: $B0DA

==> mem_shift(bb,4).
-: $00AB

(*----------------------------------------------------------------*)
mem_bitswap(var b: byte_string): byte_string;

Within each byte of b, the 8 bits are swapped from most significant
<--> least significant, that is, sum{b_k*2**k, 0 <= k < 8}
is replaced by sum{b_k*2**(7-k), 0 <= k < 8}.
The modified byte_string is returned.
Example:

==> bb := $0102_1e2f.
-: $0102_1E2F

==> mem_bitswap(bb).
-: $8040_78F4

(*----------------------------------------------------------------*)
mem_byteswap(var b: byte_string; wordlen: integer): byte_string;

The byte_string is subdivided in groups of wordlen bytes each.
Within each group, the bytes are swapped from most significant
<--> least significant.
The modified byte_string is returned.
Example:

==> bb := $AABBCCDDEE.
-: $AABB_CCDD_EE

==> mem_byteswap(bb,2).
-: $BBAA_DDCC_EE

==> mem_byteswap(bb,5).
-: $EECC_DDAA_BB

The functions mem_byteswap and mem_bitswap are useful for
transforming bitmaps.

(*----------------------------------------------------------------*)

f) Arrays, records
==================

length
sum
product
sort
binsearch
alloc
realloc
max_arraysize
new
nil

(*----------------------------------------------------------------*)
length(vec: array): integer;

Returns the length of the array vec.

(*----------------------------------------------------------------*)
sum(vec: array of integer): integer;
sum(vec: array of real): real;
product(vec: array of integer): integer;
product(vec: array of real): real;

Returns the sum resp. the product of all components of vec.

(*----------------------------------------------------------*)
sort(var vec: array of integer): array of integer;
sort(var vec: array of real): array of real;
sort(var vec: array of string): array of string;

The array vec, which is passed to the function sort as a variable
argument, is sorted in non-decreasing order (for strings, the
lexicographic order with respect to the ASCII-codes of characters
is used). The sorted array is returned.

sort(var vec: array of Type; compfun: function): array of Type;

The function sort may be given as a second optional argument
a comparison function
        compfun(x,y: Type): integer;
which must be a function of two arguments of the same data type
as the components of the array. The relation defined by
compfun(x,y) <= 0 must be transitive. Then vec is sorted in
non-decreasing order, where x <= y is defined by compfun(x,y) <= 0.

Example: Consider an array of pairs of integers.
We define the following comparison function

==> function compare2(x,y: array[2]): integer;
    begin
        return x[1] - y[1];
    end.
-: compare2

==> vec := ((1,7), (2,3), (3,4), (4,-1), (5,2));
    sort(vec,compare2).
-: ((4, -1), (5, 2), (2, 3), (3, 4), (1, 7))

(*----------------------------------------------------------------*)
binsearch(ele: <type>; var vec: array of <type> 
          [; compfun: function]): integer;

The array vec must be a sorted array of elements of type <type>.
The function searches in this array for an occurrence of the
element ele and returns its position (zero-based). If ele is not
found, -1 is returned.
The third argument of binsearch is a comparison function

        compfun(x,y: <type>): integer;

which must be a function of two arguments of the same data type
as the components of the array (see function sort).
If vec is an array of integers, characters or strings,
then the comparison function may be omitted. In this case the 
natural order (numerical resp. alphabetical) is assumed.

(*----------------------------------------------------------------*)
alloc(Arraytype, Len [,Ele]): Arraytype;

Arraytype must be one of the symbols array, string, byte_string.
The function generates an array (resp. a string, a byte_string)
of length Len, where all components are equal to Ele. If the argument
Ele is not given, a default element is used. This default element
is 0 for arrays, the space character ' ' for strings, and the
zero byte for byte_strings.
Examples:

==> alloc(array,10).
-: (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

==> alloc(string,5,'A').
-: "AAAAA"

==> alloc(byte_string,5,127).
-: $7F7F_7F7F_7F

(*----------------------------------------------------------------*)
realloc(var vec: <arraytype>; len: integer [; ele]): <arraytype>

The variable argument vec must be an array, a string
or a byte_string. If the integer len is bigger than the
length of vec, the function increases the length of vec
to len by appending components of value ele at the end.
If ele is not given, default values are used. The new
array (resp. string}, byte_string) is returned and
also placed in the variable vec.
If len is equal to the length of vec, then vec
remains unchanged. If len is smaller than the length of
vec, then vec is truncated to this smaller length.

Examples:
==> vec := (17,4,31).
-: (17, 4, 31)

==> realloc(vec,5,53).
-: (17, 4, 31, 53, 53)

==> bb := $AABB.
-: $AABB

==> realloc(bb,10).
-: $AABB_0000_0000_0000_0000

==> s := "abcde".
-: "abcde"

==> realloc(s,3).
-: "abc"

(*----------------------------------------------------------*)
max_arraysize(): integer;

In the present version of ARIBAS, lengths of arrays cannot be
very large. The function max_arraysize returns the maximal
admissible length. Typically, under UNIX, this value is about 64000,
under MSDOS about 12000 or 16000.
The maximal admissible length for strings and byte_strings is

        min(4*max_arraysize(), 2**16-1).

(*----------------------------------------------------------*)
new(var ptr: pointer to RecType): Rectype;

If ptr is a variable of type pointer to a certain record type,
then new(ptr) creates a new record of that type and makes ptr
point to this record. For example, after the variable declaration

    var
        ptr: pointer to record x,y,w,h: integer; end;
    end;

ptr has the value nil. Calling

    ==> new(ptr).
    -: &(0, 0, 0, 0)

produces a record with four integer fields which can be accessed
by ptr^.x, ptr^.y, ptr^.w and ptr^.h. For example

    ==> ptr^.x := ptr^.y := 10; ptr^.w := 512; ptr^.h := 360.
    -: 360

    ==> ptr^.
    -: &(10, 10, 512, 360)

(*----------------------------------------------------------*)

g) Stacks
=========

length
stack_push
stack_arraypush
stack_pop
stack_top
stack_reset
stack_empty
stack2array
stack2string

(*-----------------------------------------------------------------*)
There are no stack literals. One can generate stacks by
variable declarations. For example, the following top level
declaration

var
    st: stack;
end.

generates an empty stack. Afterwards, one can put elements
onto the stack using the function stack_push.

(*-----------------------------------------------------------------*)
length(st: stack): integer;

Returns the length of the stack st, i.e. the number of elements
(of arbitrary data type) which lie on the stack.

(*-----------------------------------------------------------------*)
stack_push(st: stack; ele: Type): Type;

Puts an element ele (of arbitrary data type Type) on top of the
stack st. The length of the stack is increased by 1. The return
value of the function is ele.

(*-----------------------------------------------------------------*)
stack_arraypush(st: stack; vec: array of <type> 
                [; direction: integer]): integer;

Pushes the components of the array vec onto the stack
st. If the argument direction is positive or omitted,
the order is from beginning to the end of vec. If
direction is negative, the pushing occurs in reverse order.
Return value is the number of elements pushed on st
(= the length of vec).
Examples:

==> var st: stack; end.
-: var

==> vec := (1,2,3,4,5).
-: (1, 2, 3, 4, 5)

==> stack_arraypush(st,vec,-1).
-: 5

==> vec1 := stack2array(st).
-: (5, 4, 3, 2, 1)

(*-----------------------------------------------------------------*)
stack_pop(st: stack): Type;

The stack st must be non-empty. The function
removes the top element of st and returns it.
The length of the stack is decreased by 1.

(*-----------------------------------------------------------------*)
stack_top(st: stack): Type;

Returns the top element of the stack st; the stack itself is
not altered.

(*-----------------------------------------------------------------*)
stack_reset(st: stack): integer;

Removes all elements from the stack st. There remains an empty stack.
The function returns 0.

(*-----------------------------------------------------------------*)
stack_empty(st: stack): boolean;

Tests if the stack st is empty.

(*-----------------------------------------------------------------*)
stack2array(st: stack): array of Type;

Returns an array of length equal to length(st) whose components
are the elements lying on the stack. The element at the bottom of
the stack becomes the component of index 0. After execution of this
function, the stack st is empty. It is in the responsibility of
the programmer to ensure that all element have the correct data type.

(*-----------------------------------------------------------------*)
stack2string(st: stack): string;

The elements on the stack st, which are strings
or characters, are concatenated to a string. This string
is returned. Elements of other data types on the stack 
are ignored. After execution of this function, the stack 
st is empty.
Example:

==> var st: stack; end.
-: var

==> stack_push(st,"stack").
-: "stack"

==> stack_push(st,pi).
-: 3.14159265

==> stack_push(st,'_').
-: '_'

==> stack_push(st,"push").
-: "push"

==> stack2string(st).
-: "stack_push"

(*-----------------------------------------------------------------*)

h) In/Out
=========

write
writeln
flush
readln
load
open_read
open_write
open_append
rewind
close
set_filepos
get_filepos
length
read_byte
read_block
write_byte
write_block

Predifined files:
stdin
stdout
stderr

(*--------------------------------------------------------------------*)
open_write(var f: file; fnam: string): boolean;

Opens a file with name fnam for write operations and sets the
file variable f. (This file variable is needed for the write operations.)
If a file with name fnam does not exist, it is created.
Return value: true if the file has been succesfully opened, and
false, if an error occurs.

CAUTION: If a file with name fnam exists already, its previous
content is overwritten and will be lost.

(*--------------------------------------------------------------------*)
open_append(var f: file; fnam: string): boolean;

Opens a file with name fnam for write operations and sets the
file variable f. (This file variable is needed for the write operations.)
If a file with name fname does not exist, it is created.
If the file exists already, the previous content is preserved
and the new write operations are at the end of the file.
Return value: true if the file has been succesfully opened, and
false, if an error occurs.

(*--------------------------------------------------------------------*)
open_read(var f: file; fnam: string): boolean;

Opens an existing file with name fnam for sequential reading.
Return value: true if the file has been succesfully opened, and
false, if an error occurs.

(*--------------------------------------------------------------------*)
rewind(var f: file): boolean;

If f is a file which has been opened for reading and from which
some data have already been read, rewind(f) resets the file position
for the the next read operation to the beginning of the file.
Return value: true if successful, else false.

(*--------------------------------------------------------------------*)
close(f: file): boolean;

Closes a file f which has been opened before.

(*--------------------------------------------------------------------*)
length(f: file): integer;

f must be a file opened for reading. Then the function returns
the length of the file in bytes.

(*--------------------------------------------------------------------*)
Read and write operations on text files

readln
write
writeln

(*--------------------------------------------------------------------*)
readln([f: file;] var arg1,...,argn): integer;

Reads a line from file f, which must have been opened for reading.
(If the file argument is not supplied, stdin is assumed, i.e. readln
reads from the terminal.) The arguments arg1,...,argn must be
of type integer, real, char or string. (A string variable always
consumes all characters until the end of line.) The return value
of readln is the number of successfully read items. If the end of file
is already reached before the call of readln, -1 is returned. For example,
assume that x is an integer variable, c1, c2 are character variables
and s is a string variable. If the current line in the file f is

1234 56 ab

(where the line ends immediately after the character b), then
readln(f,c1,x,c2,s) will return 4 and the variables will contain
the following values:
        c1 = '1', x = 234, c2 = ' ', s = "56 ab".
If the same line is read with readln(f,s,x,c1,c2), then the return
value is 1, the variable s contains the string "1234 56 ab", and
x, c1, c2 are undefined.
If an integer extends over more than one line, as in

3_14159_26535_89793_23846_26433_83279_50288_41971_69399_37510_58209_74944_
59230_78164_06286_20899_86280_34825_34211_70679

where the continuation of the integer to the next line is marked by
an underscore _, then this integer may be read by readln(f,x).
While reading an integer, readln does not stop at the end of a line
if the last character in the line is an underscore (no space or tab
characters are allowed after the underscore).

readln(f) without further arguments simply returns 0 and advances the
file position to the beginning of the next line.

(*--------------------------------------------------------------------*)
write([f: file;] arg1,...,argn): integer;
writeln([f: file;] arg1,...,argn): integer;

Writes the arguments arg1,...,argn (which may have any data type)
into a text file f, which must have been opened for writing.
The function writeln adds a linefeed to the output.
(If the file argument is not supplied, stdout is assumed, i.e.
the functions write to the terminal.)
Return value is the number of written arguments or -1 in case of error.

(*--------------------------------------------------------------------*)

FORMAT OPTIONS for the functions write and writeln
--------------------------------------------------
As in Pascal, arguments of the functions write or writeln
of certain data types can be supplemented by format specifications.
In ARIBAS there are even more format options than in Pascal.
The format specifications, which we will describe in the following,
are separated from the argument by a colon.

a) Width specification
----------------------
If x is an integer, character oder string expression, then an
argument of the form
        x: wd
determines the width of the output. wd must be an integer expression.
If the value of width is bigger than the length of the string
representation of x, then by inserting an appropiate number of
space characters before x, the total width of the output is made
equal to the value of wd. If the value of wd is negative
and abs(wd) is bigger than the length of the string representation
of x, then the necessary space characters are inserted after x.
If abs(wd) is smaller or equal to the length of x, the format
option is ignored. The same happens if abs(wd) is bigger than the
line length.

Example:
==> writeln("###",123:8,'#',"abc":-8,'X':-3,"###");
    writeln("###",123:-8,'#',"abc":8,'X':3,"###").
###     123#abc     X  ###
###123     #     abc  X###
-: 6

b) Formatting reals
-------------------
If x is a real, then an argument of the form
        x: wd
causes the (right aligned) output of x in exponential notation with
a total width equal to the value of wd, which must be at least 10.
Example:

==> writeln("###",exp(1):15,"###");
    writeln("###",-exp(10):15,"###");
    writeln("###",exp(-10000):15,"###").
### 2.718282E+0000###
###-2.202647E+0004###
### 1.135484E-4343###

An argument of the form
        x: wd: dec
causes the output of x in fixed point representation with a total
width wd and dec digits after the decimal point.
Example:

==> writeln("###",exp(1):15:5,"###");
    writeln("###",exp(10):15:5,"###").
###        2.71828###
###    22026.46579###
-: 3

More elaborate format options for reals can be constructed using
the function float_ecvt.

c) Additional format options for integers
-----------------------------------------
As extensions of the Pascal format options, ARIBAS admits further
options which are also separated by a colon and which have the form
        base(n)
        group(n)
        digits(n)
with an integer expression n.

i) base(n)

The format option base(n), where n may have one of the values
2, 8, 10 or 16 determines the base of the integer representation.

Example:
==> x := 3**9; writeln(x:10, x:20:base(2), x:10:base(8), x:10:base(16)).
     19683    1001100_11100011     46343      4CE3
-: 4

Note that write(x:base(n)) doesn't print the base prefix. If you want
it to be written, you can achieve this as in the following example.

==> writeln("0y",3**9:base(2)).
0y1001100_11100011
-: 2

ii) group(n)

The output of big integers in ARIBAS is structured by underscores.
By default, ARIBAS uses for integers >= 2**32 an underscore after
every 5 digits. This behavior can be customized by the group(n)
option. Here n may be 0 or an integer >= 2. With the option group(0)
no underscores are written; with the option group(n), n>=2, the output
is subdivided in groups of n digits separated by underscores.

Example:
==> x := 3**100;
    writeln(x);
    writeln(x: group(0));
    writeln(x: group(10)).
515_37752_07320_11331_03646_11297_65621_27270_21075_22001
515377520732011331036461129765621272702107522001
51537752_0732011331_0364611297_6562127270_2107522001
-: 1

The group(n) option can also be applied to byte_strings. Here n
must be even.
Example:
==> bb := byte_string(17**37);
    for n := 0 to 10 by 2 do
        writeln(bb:group(n));
    end.
513C759F43245912A19E1D5A0027B6B4F7C296
51_3C_75_9F_43_24_59_12_A1_9E_1D_5A_00_27_B6_B4_F7_C2_96
513C_759F_4324_5912_A19E_1D5A_0027_B6B4_F7C2_96
513C75_9F4324_5912A1_9E1D5A_0027B6_B4F7C2_96
513C759F_43245912_A19E1D5A_0027B6B4_F7C296
513C759F43_245912A19E_1D5A0027B6_B4F7C296

iii) digits(n)

With the format option digits(n) one can force the output of leading
zeroes. If n is bigger than the number of digits of an integer x
with respect to a certain base, then leading zeroes are added such
that the total number of digits equals n. If n is smaller than the
number of digits of x, the format option is ignored.

Example:
==> for x := 3 to 10 do
        writeln(x: 10: base(2): digits(4): group(2));
    end.
     00_11
     01_00
     01_01
     01_10
     01_11
     10_00
     10_01
     10_10

The format options base, digits, group may appear in arbitrary order.

(*--------------------------------------------------------------------*)
flush([f: file]);

If f is an output file (default f = stdout) to which write operations
have been performed, but some of the data are still being held in a
buffer, then flush writes all data actually to the file.

(*--------------------------------------------------------------------*)
load(fnam: string): boolean;

fnam must be the name of a text file with ARIBAS source code,
the extension .ari may be omitted. Then load reads this file
and executes all commands and function definitions in the file
as if they had been input directly at the ARIBAS prompt.
Typically, a loaded file contains definitions of functions.
As they are read in, the names of the functions are printed to
the terminal screen. If the file contains expressions to be evaluated,
the result is printed to the screen.

The return value of load is true, if the load operation was successful.
In case of error, an error message is written, specifying a line number,
where the error was detected (actually the error might be in some
previous line).

If the string fnam consists of several components separated by whitespace,
then the first component is considered as the name of the file to load
and the other components are treated as arguments which are collected as
strings (together with the file name) in the vector ARGV.
For example, suppose that a file abc1.ari with ARIBAS code exists
in the current directory. Then

    ==> load("abc1 8765 olfac").

will load the file abc1.ari and the vector ARGV will have the
following content:

    ==> ARGV.
    -: ("abc1", "8765", "olfac")

This is as if you had started ARIBAS with command line arguments

    aribas abc1 8765 olfac

(See Chap.10, COMMAND LINE ARGUMENTS.)

load(fnam,0).

With a second argument 0 the function load works in quiet mode,
the messages to terminal are suppressed.

(*--------------------------------------------------------------------*)
BINARY FILES:

In ARIBAS, files are text files by default. However, files can also
be opened in binary mode for reading and writing using the functions
open_write, open_read, open_append. In this case, a third argument,
consisting of the keyword binary, must be given. Example:

==> open_read(f,"BIN.DAT",binary).

This opens a file with name "BIN.DAT", which is supposed to exist,
for reading in binary mode.
For binary files there are the read operations read_byte and
read_block and the write operations write_byte and write_block.
The functions rewind and length may also be applied to binary files,
which have been opened for reading.

(*--------------------------------------------------------------------*)
set_filepos(f: file; pos: integer): integer;

f must be a binary file, opened for reading and pos must be an integer
satisfying 0 <= pos < length(f). Then set_filepos sets the position
for the next read operation at pos bytes from the beginning of the
file. If pos is not in the admissible range, no action is taken.
Return value is the file position after execution of set_filepos.

(*--------------------------------------------------------------------*)
get_filepos(f: file): integer;

f must be a binary file, opened for reading. The function returns
the current file position.

(*--------------------------------------------------------------------*)
read_byte(f: file): integer;

Reads one byte at the current file position from a binary file opened
for reading and increases the file position by 1. Return value is the
read byte (an integer in the range 0 <= x < 256). If the file position
is already end-of-file when read_byte is called, then -1 is returned
and the file position remains unchanged.

(*--------------------------------------------------------------------*)
read_block(f: file; var block: byte_string; len: integer): integer;

f must be a binary file opened for reading. The argument block must
be a byte_string variable or a subarray of a byte_string with an
actual length >= len. Then read_block reads len bytes from the
file f (starting at the current file position) and stores them
into the first len components of block. If the end-of-file is
reached prematurely, the reading oeration is stopped and only the
bytes read so far are stored in block. Return value of read_block
is the number of actually read bytes. The file position is advanced
by this value.

(*--------------------------------------------------------------------*)
write_byte(f: file; x: integer): integer:

Writes one byte (given by an integer x in the range 0 <= x < 256) into
a binary file f opened for writing (using open_write or open_append).
Instead of an integer x one can use also a character.
Return value in case of success is the written byte. In case of
error, -1 is returned.

(*--------------------------------------------------------------------*)
write_block(f: file; var block: byte_string; len: integer): integer;

f must be a binary file opened for writing. The argument block must
be a byte_string variable or a subarray of a byte_string with an
actual length >= len. Then write_block writes the first len bytes
from block into the file f. Return value of write_block is the number
of successfully written bytes. If no error occurs, this number
equals len.

(*-----------------------------------------------------------------*)

i) System functions
====================

version
memavail
gc
timer
gmtime
halt
exit
symbols
make_unbound
help
transcript
system
getenv
set_workdir
get_workdir

(*-----------------------------------------------------------------*)
version(): integer;

Writes the version number and the architecture, for which ARIBAS
was compiled, to the terminal screen. Returns an integer, which is
100*(major version no) + (minor version no). Example:

==> version().
ARIBAS Version 1.01, Sep. 1996 (MS-DOS 386)
-: 101

With the optional argument 0, the message to the screen is suppressed.
Example:

==> version(0).
-: 101

(*-----------------------------------------------------------------*)
memavail(): integer;

Writes some memory statistics to the screen and returns the free space
(measured in KB) on the ARIBAS heap. Example:

==> memavail().

total number of garbage collections: 2
  130044 Bytes reserved; 130044 Bytes active (97900 used, 32144 free)
   10926 Bytes free for user defined symbols and symbol names
-: 31

Since ARIBAS has a garbage collector using the half space method,
the ARIBAS heap is subdivided into two equal parts (in this example
130044 bytes each). One part is active, memory requirements (for
example for big integers) are satisfied from this part. In the
above example 32144 bytes are still available. If the memory in
the active part is exhausted, the garbage collector is called
automatically. The total number of garbage collections since the
beginning of the current ARIBAS session is also given. The names
of user defined functions and variables are stored by ARIBAS in a
symbol table. The space still available for this purpose is also
reported.
One can suppress all messages by calling memavail with the
argument 0.

==> memavail(0).
-: 31

(*-----------------------------------------------------------------*)
gc(): integer;

Forces a garbage collection and returns the new amount of memory
(in KB) on the ARIBAS heap. The function outputs the same messages
as the function memavail.
A quiet version is gc(0). This is useful for example, if one wants
to call some procedure only if a certain minimal amount of memory
is available, as in the following code

if gc(0) < 64 then
    writeln("not enough memory for procedure foo");
else
    foo(...);
    ...
end;

(*-----------------------------------------------------------------*)
timer(): integer;

Returns the number of milliseconds elapsed since a certain starting
point dependend on the current computer session. (The precision
is system dependent.) This can be used for example to measure the
time needed to execute a certain function. Example:

==> t := timer();
    x := isqrt(2*10**2000);
    timer() - t.
-: 88

In the above example, which was done under LINUX on a computer with a
80486 processor, 33MHz, the square root of 2 was calculated with a
precision of 1000 decimal places in 88 milliseconds.

(*-----------------------------------------------------------------*)
gmtime(): string;

Returns Greenwich Mean Time as a string in the format
"YYYY:MM:DD:hh:mm:ss" (year, month, day, hour, minutes, seconds).
You can use the function string_split to retrieve the
components of this string and use it to write your own
custumized time function.

Example:
==> gmtime().
-: "2003:06:09:08:26:20"

==> tt := string_split(_,":").
-: ("2003", "06", "09", "08", "26", "20")

==> t0 := alloc(array,6);
    for k := 0 to 5 do
        t0[k] := atoi(tt[k]);
    end;
    t0.
-: (2003, 6, 9, 8, 26, 20)

gmtime(0): integer;

If gmtime is called with the argument 0, then it returns
the number of seconds passed since Jan. 1, 2000, 0:00 h GMT.

Example:
==> gmtime(0).
-: 108462687

(*-----------------------------------------------------------------*)
symbols(aribas).

Returns a list of ARIBAS keywords and builtin functions.
The argument aribas has to be given as it stands (without quotes).

symbols(user).

Returns a list of currently user defined variables and functions.

(*-----------------------------------------------------------------*)
make_unbound(Sym): boolean;

The symbol Sym denoting a user defined variable, constant or function
can be made unbound. Builtin functions cannot be made unbound.
Returns true if the removal of binding was successful.
Example:

==> vec := (2,3,4).
-: (2, 3, 4)

==> vec.
-: (2, 3, 4)

==> make_unbound(vec).
-: true

==> vec.
eval: unbound symbol: vec
-: error

make_unbound is useful if one wants to recover memory used for
variables (holding e.g. big integers or long arrays) which are
no longer needed.

The argument to make_unbound may also be the symbol user:

make_unbound(user): boolean;

This unbinds all user defined variables, constants and functions.
Example:

==> symbols(user).
-: (ecN_add, ecN_dup, ecN_mult, ec_bigprimevar, ec_fact0, ec_factbpv, 
ec_factorize, ecfactor, factor0, factorlist, factors, modpemult, ppexpo, 
primelist, x, y)

==> make_unbound(user).
-: true

==> symbols(user).
-: ()

(*-----------------------------------------------------------------*)
help(Topic)

Gives a short online help on Topic. For Topic one can use
most symbols of the list returned by the command symbols(aribas).
For example,

==> help(factor16).

gives a short description of the builtin function factor16.

The help function depends on the file aribas.hlp, which
contains the help texts. Under MS-DOS, this file must lie
in the same directory as aribas.exe, under UNIX it must be
in the search path.

(*-----------------------------------------------------------------*)
transcript([fnam: string]): boolean;

Opens a log file with name fnam. The extension .log is appended
automatically to fnam, if fnam has no extension. If no argument is
given to transcript, "aribas.log" is used by default. For example,

    ==> transcript("a1").
    -: true

opens a file a1.log (if it exists already, its previous content is
lost). The effect of transcript is that all subsequent interaction
between the user and ARIBAS is transcribed to the log file until the
log file is closed again with the command

    ==> transcript(0).

The end of an ARIBAS session closes the log file automatically.

(*-----------------------------------------------------------------*)
system(command: string): integer;

The string command is handed to the command interpreter (resp. shell)
of the system for execution. Return value is an error code or 0.
For example, under MS-DOS,

    ==> system("dir").

generates a listing of the current directory. Under UNIX, you can use

    ==> system("ls -l").

for the same purpose.

(*-----------------------------------------------------------------*)
getenv(name: string): string;

Returns the value of the environment variable name or the empty
string, if this variable is not defined.
Example: Under UNIX,

    ==> getenv("HOME").

returns the name of the home directory of the current user.

(*-----------------------------------------------------------------*)
get_workdir(): string;

Retrieves the current working directory.

(*-----------------------------------------------------------------*)
set_workdir(path: string): string;

Sets the current working directory to the one given by 
path. This can be either an absolute or a relative
path. Return value is the new path. If the path does not
exist, or ARIBAS is unable to open it, then the
old working directory remains unchanged and the empty
string is returned.
Example:

==> set_workdir("D:\aribas\work").
-: "D:\aribas\work"

(This example supposes that the directory "D:\aribas\work" exists.)

(*-----------------------------------------------------------------*)
halt([retcode: integer]): integer;

A call to halt causes an immediate stop of the current function
and a return to top level (even if halt occurs in a deeply nested
function call). The return value is the optional argument retcode
which must be a 16-bit integer (default value 0).
The function halt is mainly used to recover from serious errors.
Note: In contrast to exit, halt does not stop ARIBAS, but returns
to the ARIBAS prompt.

(*-----------------------------------------------------------------*)
exit

The command exit stops ARIBAS and returns to the shell or command
interpreter from where ARIBAS was called.

(*-----------------------------------------------------------------*)

9) USER DEFINED FUNCTIONS
=========================

function
procedure
external
const
var
begin
end
return

(*--------------------------------------------------------------------*)
In ARIBAS, all functions are defined at the same level (as in C).
Nested function definitions (as in Pascal or Modula-2) are not
allowed.
Within function definitions one may refer to other functions,
even if they have not yet been defined (no FORWARD declarations
are necessary). It is in the responsibilty of the programmer
to ensure that all necessary functions have been defined when
the function is actually called.

(*--------------------------------------------------------------------*)
A function definition has the following form:

function Funame(<formal parameter list>): Resulttype;
<external declaration>
<constant declaration>
<variable declaration>
begin
    <statemement list>
end.

Instead of function, one may also use the keyword procedure (for
compatibility with Modula-2).
Funame must be an admissible identifier, different from all
ARIBAS keywords and names of builtin functions.
(Also for compatibility with Modula-2, Funame may be repeated
after the symbol end.)
The formal parameter list may contain (as in Pascal or Modula-2)
value and variable parameters. The parameter list may also be
empty, however the pair of parentheses may not be omitted.

The external, constant und variable declarations, which will be
discussed later, may also be absent.
The body of the function comes between the symbols begin and end.
It may contain one or more return statements of the form

        return Retval;

where Retval must have the data type Resulttype.
In ARIBAS, also structured types (like arrays) may be used
as Resulttype.

Examples:
(*--------------------------------------------------------------*)
function mersenne(n: integer): integer;
begin
    return 2**n - 1;
end.
(*--------------------------------------------------------------*)
This function calculates the n-th Mersenne number.

==> mersenne(59).
-: 576_46075_23034_23487

An alternative form of this function definition is
(*--------------------------------------------------------------*)
procedure mersenne(n: integer): integer;
begin
    return 2**n - 1;
end mersenne.
(*--------------------------------------------------------------*)
Remark: The period '.' at the end of the function definition
is only necessary if one inputs the function definition directly
at the ARIBAS prompt. If the function definition is in a file,
which is loaded by ARIBAS (using the function load), one may also
put a semicolon instead of the period.

The following is a recursive function to calculate the
factorial of n.
(*--------------------------------------------------------------*)
function fac_rec(n: integer): integer;
begin
    if n <= 2 then
        return n;
    else
        return fac_rec(n-1)*n;
    end
end.
(*--------------------------------------------------------------*)

Variable declarations
---------------------
If the function needs local variables, they have to be declared
as in the following example, which is an iterative version of
the above function.

function fac_it(n: integer): integer;
var
    i,x: integer;
begin
    x := 1;
    for i := 2 to n do
        x := x*i;
    end;
    return x;
end.
(*---------------------------------------------------------*)
Using initializations in the variable declaration, this function
could also have been written in the following way:

function fac_it1(n: integer): integer;
var
    i := 1;
    x := 1;
begin
    while inc(i) <= n do
        x := x*i;
    end;
    return x;
end.
(*---------------------------------------------------------*)

In contrast to Pascal, the lengths of arrays in variable
declarations need not be constants.

Example:
(*---------------------------------------------------------*)
function squarelist(n: integer): array;
var
    k: integer;
    vec: array[n];
begin
    for k := 1 to n do
        vec[k-1] := k*k;
    end;
    return vec;
end.
(*---------------------------------------------------------*)
This function generates an array of length n containing the
square numbers from 1 to n**2.

==> squarelist(5).
-: (1, 4, 9, 16, 25)

In ARIBAS it is even possible to define functions that
return a stack, as in the following example.
(*---------------------------------------------------------*)
function mk_stack(x: integer): stack;
var
    st: stack;
begin
    stack_push(st,x);
    return st;
end.
(*---------------------------------------------------------*)
This function creates a stack of length 1 containing the
integer x.

==> S := mk_stack(17).
-: <STACK:260101DA>

==> stack_top(S).
-: 17
(*---------------------------------------------------------*)

External declarations
---------------------
If one wants to access global variables from within functions,
they must be declared in the external declaration. The same
holds for user defined global constants.
(This is a precautionary measure, since it is so easy to create
global variables simply by assignments. Anyway, one should use
global variables inside functions only exceptionally.)

Example:
(*---------------------------------------------------------*)
function count(): integer;
external
    Counter: integer;
begin
    return inc(Counter);
end;
(*---------------------------------------------------------*)
This is also an example of a function with empty argument list.
It is supposed that the integer variable Counter exists when
the function is called.

==> Counter := 7;
    count().
-: 8

At the same time, the variable Counter has been increased by 1.

==> Counter.
-: 8

The same effect can be achieved by passing Counter as a variable
parameter.
(*---------------------------------------------------------*)
function count1(var counter: integer): integer;
begin
    return inc(counter);
end;
(*------------------------------------------------------------*)
With the global variable Counter from above, we get

==> count1(Counter).
-: 9

==> Counter.
-: 9

(*------------------------------------------------------------*)

Constant declarations
---------------------
Constant declarations within function definitions are placed
after the external declarations and before the variable
declarations. They have a syntax as in Pascal or Modula-2.
However, ARIBAS allows for example also array contants.

Example:
(*------------------------------------------------------------*)
function dayofweek(n: integer): string;
const
    Week = ("SU", "MO", "TU", "WE", "TH", "FR", "SA");
begin
    return Week[n mod 7];
end;
(*------------------------------------------------------------*)
==> dayofweek(4).
-: "TH"

(*------------------------------------------------------------*)

Optional arguments of functions
-------------------------------
In ARIBAS, it is possible to define functions with optional
arguments. To do this, one must put assignments of the form
<identifier> := Val at the end of the formal parameter list
instead of the usual type declarations for value parameters.
If in a call of this function the corresponding argument is
not supplied, Val is used as default value. If one supplies the
argument, it may have any value of the same data type as Val.

Example
(*------------------------------------------------------------*)
function ranvec(len: integer; bound := 1000): array;
var
    vec: array[len];
    i: integer;
begin
    for i := 0 to len-1 do
        vec[i] := random(bound);
    end;
    return vec;
end;
(*------------------------------------------------------------*)
This functions creates an array of length len whose components
are random numbers. If the function is called only with the argument
len, then the randon numbers are taken from the interval 0 <= x < 1000.
If called with two arguments len and bound, the random numbers are
taken in the range 0 <= x < bound.

==> ranvec(12).
-: (923, 23, 510, 475, 970, 974, 5, 553, 175, 700, 891, 411)

==> ranvec(12,100).
-: (15, 95, 55, 99, 17, 63, 7, 82, 24, 62, 49, 10)

There may be more than one optional argument.
(*------------------------------------------------------------*)
function ran_vec(len := 10; bound := 1000): array;
var
    vec: array[len];
    i: integer;
begin
    for i := 0 to len-1 do
        vec[i] := random(bound);
    end;
    return vec;
end;
(*------------------------------------------------------------*)
This function may be called with zero, one or two arguments.

==> ran_vec().
-: (616, 446, 251, 397, 405, 516, 535, 220, 928, 703)

==> ran_vec(8).
-: (366, 149, 680, 868, 297, 827, 466, 736)

==> ran_vec(8,60).
-: (1, 50, 7, 11, 1, 45, 8, 11)

(*------------------------------------------------------------*)


10) COMMAND LINE ARGUMENTS
==========================

One can call ARIBAS with several command line arguments:

    aribas [options] [<ari-file> [<arg1> <arg2> ...]]

The following options are available:

-q
    (quiet mode) Suppresses all messages to the screen (version no,
    copyright notice, etc.) when ARIBAS is started

-v
    (verbose mode, default) Does not suppress messages to the screen
    when ARIBAS is started.

-c <cols>
    ARIBAS does its own line breaking when writing to the screen.
    Normally it supposes that the screen (or the window in which
    ARIBAS runs) has 80 columns. With the -c option you can set another
    number, which must be between 40 and 160 (in decimal representation).
    For example, if you run ARIBAS in an Xterm window with 72 columns,
    use the option -c72 (or -c 72, the space between -c and the number
    is optional).

-m <mem>
    Here <mem> is a number (in decimal representation) between 64
    and 16000. This number indicates how many Kilobytes of RAM
    ARIBAS should use for the ARIBAS heap. The default value depends
    on the options used when ARIBAS was compiled. Typically, under
    UNIX or LINUX it is 2 Megabytes, corresponding to -m2000

-h <path of help file>
    The online help of ARIBAS depends on a file aribas.hlp
    which should be situated (under MS-DOS) in the same directory
    as aribas.exe or (under UNIX) in the range of the environment
    variable PATH. If this is not the case you can specify the
    exact path of the help file with the -h option. If for example
    the file aribas.hlp is in the directory /usr/local/lib, use the
    option -h /usr/local/lib (the space after -h is not necessary).
    The -h option can also be used if the help file has a different
    name. If the help file is named help-aribas and lies in the
    directory /home/joe/ari, use -h/home/joe/ari/help-aribas .

-p <ari-search-path>
    With this option you can specify a search path for loading
    files with ARIBAS source code. <ari-search-path> may be either
    the (absolute) pathname of one directory or several pathnames
    separated by colons (under UNIX) or semi-colons (under MS-DOS).
    Under UNIX, the user's home directory may be abbreviated by ~/ .
    Suppose (under UNIX) that you have called ARIBAS with the
    option

        -p/usr/local/lib/aribas:~/ari/examples

    and that your home directory is /home/alice/. Then the command

        ==> load("factor").

    will search the file factor.ari first in the current directory,
    then in the directory /usr/local/lib/aribas and finally in
    /home/alice/ari/examples.
    Under MS-DOS, a typical example for the -p option looks like

        -pC:\aribas\examples;D:\work\ari

-b
    Batch mode when loading an ARIBAS source code file from
    the command line, see below.

    One letter options which require no arguments may be merged,
    for example
        aribas -q -b
    is equivalent to
        aribas -qb

<ari-file>
    The next command line argument after the options is interpreted
    as the name of a file with ARIBAS source code. If the file name
    has the extension .ari, this extension may be omitted. The file
    is loaded as if the command load("<ari-file>") had been given
    after the start of ARIBAS at the ARIBAS prompt. If the file is
    not found in the current directory it is searched in the
    directories specified by the -p option.
    If the option -b was given, the file is loaded and executed.
    Afterwards ARIBAS exits without showing it's prompt. If
    the file cannot be loaded completely because of an error,
    ARIBAS exits immediately after the error message.

<arg1> <arg2> ...
    When further command line arguments follow <ari-file>, they
    are collected (as strings) together with <ari-file> in the vector
    ARGV which can be accessed from within ARIBAS.
    Example: If you call ARIBAS with the command line

        aribas startup 4536 eisenstein

    and the current directory contains the file startup.ari, then
    ARIBAS loads it and the vector ARGV has the form

        ==> ARGV.
        -: ("startup", "4536", "eisenstein")

    If you need some arguments as numbers and not as strings, you can
    transform them by atoi (or atof); in our example

        ==> x := atoi(ARGV[1]).
        -: 4536

    will do it. The length of the vector ARGV can be determined by
    length(ARGV).

Configuration file
------------------
Options for running ARIBAS can be specified also using a configuration
file. Under UNIX, this file is named .arirc, under MS-DOS its name
is aribas.cfg. ARIBAS searches for a configuration file in the
following order:

    1) current directory
    2) Under UNIX: home directory of the user
       Under MS-DOS: directory containing aribas.exe

Under UNIX, there is a third possibility: You can define
an environment variable ARIRC containing the name of the configuration
file (which may be different from .arirc) including the full path.

In the configuration file you can specify all command line options
described above which begin with a - sign, however a separate
line must be used for every single option. Lines beginning with
the character # or empty lines are ignored.
In addition to the options described above, the configuration
file may contain ARIBAS source code. For this purpose there
must be a line reading

-init

Then everything after this line is treated as ARIBAS source code
and executed when ARIBAS is started.

The existence of a configuration file for ARIBAS does not exclude
the possibility to give command line arguments. If an option
(e.g. the -m option) is specified both in the configuration file
and the command line but with different values, then the
specification at the command line is valid. Analogously, a -v
option on the command line overrides a -q option in the configuration
file.
If there is -init code in the configuration file and an <ari-file>
argument at the command line, then the -init code is executed first
and afterwards the <ari-file> is loaded and its code executed.

(*************************** EOF ******************************)