1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* OPCODE - Optimized Collision Detection
* Copyright (C) 2001 Pierre Terdiman
* Homepage: http://www.codercorner.com/Opcode.htm
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Contains code for a tree collider.
* \file OPC_TreeCollider.cpp
* \author Pierre Terdiman
* \date March, 20, 2001
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Contains an AABB tree collider.
*
* \class AABBTreeCollider
* \author Pierre Terdiman
* \version 1.0
* \date March, 20, 2001
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Precompiled Header
#include "Stdafx.h"
using namespace Opcode;
//! Quickly rotates & translates a vector
__forceinline void TransformPoint(Point& dest, const Point* source, const Matrix3x3& rot, const Point& trans)
{
dest.x = trans.x + source->x * rot.m[0][0] + source->y * rot.m[1][0] + source->z * rot.m[2][0];
dest.y = trans.y + source->x * rot.m[0][1] + source->y * rot.m[1][1] + source->z * rot.m[2][1];
dest.z = trans.z + source->x * rot.m[0][2] + source->y * rot.m[1][2] + source->z * rot.m[2][2];
}
//! Use CPU comparisons (comment that line to use standard FPU compares)
#define CPU_COMPARE
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* OBB-OBB overlap test using the separating axis theorem.
* - original code by Gomez / Gamasutra (similar to Gottschalk's one in RAPID)
* - optimized for AABB trees by computing the rotation matrix once (SOLID-fashion)
* - the fabs matrix is precomputed as well and epsilon-tweaked (RAPID-style, we found this almost mandatory)
* - Class III axes can be disabled... (SOLID & Intel fashion)
* - ...or enabled to perform some profiling
* - CPU comparisons used when appropriate
* - lazy evaluation sometimes saves some work in case of early exits (unlike SOLID)
*
* \param a [in] extent from box A
* \param Pa [in] center from box A
* \param b [in] extent from box B
* \param Pb [in] center from box B
* \return true if boxes overlap
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
__forceinline bool AABBTreeCollider::BoxBoxOverlap(const Point& a, const Point& Pa, const Point& b, const Point& Pb)
{
// Stats
mNbBVBVTests++;
float t,t2;
// Class I : A's basis vectors
#ifdef CPU_COMPARE
float Tx = (mR1to0.m[0][0]*Pb.x + mR1to0.m[1][0]*Pb.y + mR1to0.m[2][0]*Pb.z) + mT1to0.x - Pa.x;
t = a.x + b.x*mAR.m[0][0] + b.y*mAR.m[1][0] + b.z*mAR.m[2][0];
if(AIR(Tx) > IR(t)) return false;
float Ty = (mR1to0.m[0][1]*Pb.x + mR1to0.m[1][1]*Pb.y + mR1to0.m[2][1]*Pb.z) + mT1to0.y - Pa.y;
t = a.y + b.x*mAR.m[0][1] + b.y*mAR.m[1][1] + b.z*mAR.m[2][1];
if(AIR(Ty) > IR(t)) return false;
float Tz = (mR1to0.m[0][2]*Pb.x + mR1to0.m[1][2]*Pb.y + mR1to0.m[2][2]*Pb.z) + mT1to0.z - Pa.z;
t = a.z + b.x*mAR.m[0][2] + b.y*mAR.m[1][2] + b.z*mAR.m[2][2];
if(AIR(Tz) > IR(t)) return false;
#else
float Tx = (mR1to0.m[0][0]*Pb.x + mR1to0.m[1][0]*Pb.y + mR1to0.m[2][0]*Pb.z) + mT1to0.x - Pa.x;
t = a.x + b.x*mAR.m[0][0] + b.y*mAR.m[1][0] + b.z*mAR.m[2][0];
if(fabsf(Tx) > t) return false;
float Ty = (mR1to0.m[0][1]*Pb.x + mR1to0.m[1][1]*Pb.y + mR1to0.m[2][1]*Pb.z) + mT1to0.y - Pa.y;
t = a.y + b.x*mAR.m[0][1] + b.y*mAR.m[1][1] + b.z*mAR.m[2][1];
if(fabsf(Ty) > t) return false;
float Tz = (mR1to0.m[0][2]*Pb.x + mR1to0.m[1][2]*Pb.y + mR1to0.m[2][2]*Pb.z) + mT1to0.z - Pa.z;
t = a.z + b.x*mAR.m[0][2] + b.y*mAR.m[1][2] + b.z*mAR.m[2][2];
if(fabsf(Tz) > t) return false;
#endif
// Class II : B's basis vectors
#ifdef CPU_COMPARE
t = Tx*mR1to0.m[0][0] + Ty*mR1to0.m[0][1] + Tz*mR1to0.m[0][2]; t2 = a.x*mAR.m[0][0] + a.y*mAR.m[0][1] + a.z*mAR.m[0][2] + b.x;
if(AIR(t)>IR(t2)) return false;
t = Tx*mR1to0.m[1][0] + Ty*mR1to0.m[1][1] + Tz*mR1to0.m[1][2]; t2 = a.x*mAR.m[1][0] + a.y*mAR.m[1][1] + a.z*mAR.m[1][2] + b.y;
if(AIR(t)>IR(t2)) return false;
t = Tx*mR1to0.m[2][0] + Ty*mR1to0.m[2][1] + Tz*mR1to0.m[2][2]; t2 = a.x*mAR.m[2][0] + a.y*mAR.m[2][1] + a.z*mAR.m[2][2] + b.z;
if(AIR(t)>IR(t2)) return false;
#else
t = Tx*mR1to0.m[0][0] + Ty*mR1to0.m[0][1] + Tz*mR1to0.m[0][2]; t2 = a.x*mAR.m[0][0] + a.y*mAR.m[0][1] + a.z*mAR.m[0][2] + b.x;
if(fabsf(t) > t2) return false;
t = Tx*mR1to0.m[1][0] + Ty*mR1to0.m[1][1] + Tz*mR1to0.m[1][2]; t2 = a.x*mAR.m[1][0] + a.y*mAR.m[1][1] + a.z*mAR.m[1][2] + b.y;
if(fabsf(t) > t2) return false;
t = Tx*mR1to0.m[2][0] + Ty*mR1to0.m[2][1] + Tz*mR1to0.m[2][2]; t2 = a.x*mAR.m[2][0] + a.y*mAR.m[2][1] + a.z*mAR.m[2][2] + b.z;
if(fabsf(t) > t2) return false;
#endif
// Class III : 9 cross products
// Cool trick: always perform the full test for first level, regardless of settings.
// That way pathological cases (such as the pencils scene) are quickly rejected anyway !
if(mFullBoxBoxTest || mNbBVBVTests==1)
{
#ifdef CPU_COMPARE
t = Tz*mR1to0.m[0][1] - Ty*mR1to0.m[0][2]; t2 = a.y*mAR.m[0][2] + a.z*mAR.m[0][1] + b.y*mAR.m[2][0] + b.z*mAR.m[1][0]; if(AIR(t) > IR(t2)) return false; // L = A0 x B0
t = Tz*mR1to0.m[1][1] - Ty*mR1to0.m[1][2]; t2 = a.y*mAR.m[1][2] + a.z*mAR.m[1][1] + b.x*mAR.m[2][0] + b.z*mAR.m[0][0]; if(AIR(t) > IR(t2)) return false; // L = A0 x B1
t = Tz*mR1to0.m[2][1] - Ty*mR1to0.m[2][2]; t2 = a.y*mAR.m[2][2] + a.z*mAR.m[2][1] + b.x*mAR.m[1][0] + b.y*mAR.m[0][0]; if(AIR(t) > IR(t2)) return false; // L = A0 x B2
t = Tx*mR1to0.m[0][2] - Tz*mR1to0.m[0][0]; t2 = a.x*mAR.m[0][2] + a.z*mAR.m[0][0] + b.y*mAR.m[2][1] + b.z*mAR.m[1][1]; if(AIR(t) > IR(t2)) return false; // L = A1 x B0
t = Tx*mR1to0.m[1][2] - Tz*mR1to0.m[1][0]; t2 = a.x*mAR.m[1][2] + a.z*mAR.m[1][0] + b.x*mAR.m[2][1] + b.z*mAR.m[0][1]; if(AIR(t) > IR(t2)) return false; // L = A1 x B1
t = Tx*mR1to0.m[2][2] - Tz*mR1to0.m[2][0]; t2 = a.x*mAR.m[2][2] + a.z*mAR.m[2][0] + b.x*mAR.m[1][1] + b.y*mAR.m[0][1]; if(AIR(t) > IR(t2)) return false; // L = A1 x B2
t = Ty*mR1to0.m[0][0] - Tx*mR1to0.m[0][1]; t2 = a.x*mAR.m[0][1] + a.y*mAR.m[0][0] + b.y*mAR.m[2][2] + b.z*mAR.m[1][2]; if(AIR(t) > IR(t2)) return false; // L = A2 x B0
t = Ty*mR1to0.m[1][0] - Tx*mR1to0.m[1][1]; t2 = a.x*mAR.m[1][1] + a.y*mAR.m[1][0] + b.x*mAR.m[2][2] + b.z*mAR.m[0][2]; if(AIR(t) > IR(t2)) return false; // L = A2 x B1
t = Ty*mR1to0.m[2][0] - Tx*mR1to0.m[2][1]; t2 = a.x*mAR.m[2][1] + a.y*mAR.m[2][0] + b.x*mAR.m[1][2] + b.y*mAR.m[0][2]; if(AIR(t) > IR(t2)) return false; // L = A2 x B2
#else
t = Tz*mR1to0.m[0][1] - Ty*mR1to0.m[0][2]; t2 = a.y*mAR.m[0][2] + a.z*mAR.m[0][1] + b.y*mAR.m[2][0] + b.z*mAR.m[1][0]; if(fabsf(t) > t2) return false;
t = Tz*mR1to0.m[1][1] - Ty*mR1to0.m[1][2]; t2 = a.y*mAR.m[1][2] + a.z*mAR.m[1][1] + b.x*mAR.m[2][0] + b.z*mAR.m[0][0]; if(fabsf(t) > t2) return false;
t = Tz*mR1to0.m[2][1] - Ty*mR1to0.m[2][2]; t2 = a.y*mAR.m[2][2] + a.z*mAR.m[2][1] + b.x*mAR.m[1][0] + b.y*mAR.m[0][0]; if(fabsf(t) > t2) return false;
t = Tx*mR1to0.m[0][2] - Tz*mR1to0.m[0][0]; t2 = a.x*mAR.m[0][2] + a.z*mAR.m[0][0] + b.y*mAR.m[2][1] + b.z*mAR.m[1][1]; if(fabsf(t) > t2) return false;
t = Tx*mR1to0.m[1][2] - Tz*mR1to0.m[1][0]; t2 = a.x*mAR.m[1][2] + a.z*mAR.m[1][0] + b.x*mAR.m[2][1] + b.z*mAR.m[0][1]; if(fabsf(t) > t2) return false;
t = Tx*mR1to0.m[2][2] - Tz*mR1to0.m[2][0]; t2 = a.x*mAR.m[2][2] + a.z*mAR.m[2][0] + b.x*mAR.m[1][1] + b.y*mAR.m[0][1]; if(fabsf(t) > t2) return false;
t = Ty*mR1to0.m[0][0] - Tx*mR1to0.m[0][1]; t2 = a.x*mAR.m[0][1] + a.y*mAR.m[0][0] + b.y*mAR.m[2][2] + b.z*mAR.m[1][2]; if(fabsf(t) > t2) return false;
t = Ty*mR1to0.m[1][0] - Tx*mR1to0.m[1][1]; t2 = a.x*mAR.m[1][1] + a.y*mAR.m[1][0] + b.x*mAR.m[2][2] + b.z*mAR.m[0][2]; if(fabsf(t) > t2) return false;
t = Ty*mR1to0.m[2][0] - Tx*mR1to0.m[2][1]; t2 = a.x*mAR.m[2][1] + a.y*mAR.m[2][0] + b.x*mAR.m[1][2] + b.y*mAR.m[0][2]; if(fabsf(t) > t2) return false;
#endif
}
return true;
}
//! Use FCOMI / FCMOV on Pentium-Pro based processors (comment that line to use plain C++)
#define USE_FCOMI
//! This macro quickly finds the min & max values among 3 variables
#define FINDMINMAX(x0, x1, x2, min, max) \
min = max = x0; \
if(x1<min) min=x1; \
if(x1>max) max=x1; \
if(x2<min) min=x2; \
if(x2>max) max=x2;
//! TO BE DOCUMENTED
__forceinline bool planeBoxOverlap(const Point& normal, const float d, const Point& maxbox)
{
Point vmin, vmax;
for(udword q=0;q<=2;q++)
{
if(normal[q]>0.0f) { vmin[q]=-maxbox[q]; vmax[q]=maxbox[q]; }
else { vmin[q]=maxbox[q]; vmax[q]=-maxbox[q]; }
}
if((normal|vmin)+d>0.0f) return false;
if((normal|vmax)+d>0.0f) return true;
return false;
}
//! TO BE DOCUMENTED
#define AXISTEST_X01(a, b, fa, fb) \
min = a*v0.y - b*v0.z; \
max = a*v2.y - b*v2.z; \
if(min>max) {const float tmp=max; max=min; min=tmp; } \
rad = fa * extents.y + fb * extents.z; \
if(min>rad || max<-rad) return false;
//! TO BE DOCUMENTED
#define AXISTEST_X2(a, b, fa, fb) \
min = a*v0.y - b*v0.z; \
max = a*v1.y - b*v1.z; \
if(min>max) {const float tmp=max; max=min; min=tmp; } \
rad = fa * extents.y + fb * extents.z; \
if(min>rad || max<-rad) return false;
//! TO BE DOCUMENTED
#define AXISTEST_Y02(a, b, fa, fb) \
min = b*v0.z - a*v0.x; \
max = b*v2.z - a*v2.x; \
if(min>max) {const float tmp=max; max=min; min=tmp; } \
rad = fa * extents.x + fb * extents.z; \
if(min>rad || max<-rad) return false;
//! TO BE DOCUMENTED
#define AXISTEST_Y1(a, b, fa, fb) \
min = b*v0.z - a*v0.x; \
max = b*v1.z - a*v1.x; \
if(min>max) {const float tmp=max; max=min; min=tmp; } \
rad = fa * extents.x + fb * extents.z; \
if(min>rad || max<-rad) return false;
//! TO BE DOCUMENTED
#define AXISTEST_Z12(a, b, fa, fb) \
min = a*v1.x - b*v1.y; \
max = a*v2.x - b*v2.y; \
if(min>max) {const float tmp=max; max=min; min=tmp; } \
rad = fa * extents.x + fb * extents.y; \
if(min>rad || max<-rad) return false;
//! TO BE DOCUMENTED
#define AXISTEST_Z0(a, b, fa, fb) \
min = a*v0.x - b*v0.y; \
max = a*v1.x - b*v1.y; \
if(min>max) {const float tmp=max; max=min; min=tmp; } \
rad = fa * extents.x + fb * extents.y; \
if(min>rad || max<-rad) return false;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Triangle-Box overlap test using the separating axis theorem.
* This is the code from Tomas Mller, a bit optimized:
* - with some more lazy evaluation (faster path on PC)
* - with a tiny bit of assembly
* - with "SAT-lite" applied if needed
* - and perhaps with some more minor modifs...
*
* \param center [in] box center
* \param extents [in] box extents
* \return true if triangle & box overlap
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
__forceinline bool AABBTreeCollider::TriBoxOverlap(const Point& center, const Point& extents)
{
// Stats
mNbBVPrimTests++;
// use separating axis theorem to test overlap between triangle and box
// need to test for overlap in these directions:
// 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle
// we do not even need to test these)
// 2) normal of the triangle
// 3) crossproduct(edge from tri, {x,y,z}-directin)
// this gives 3x3=9 more tests
// move everything so that the boxcenter is in (0,0,0)
Point v0, v1, v2;
v0.x = mLeafVerts[0].x - center.x;
v1.x = mLeafVerts[1].x - center.x;
v2.x = mLeafVerts[2].x - center.x;
// First, test overlap in the {x,y,z}-directions
#ifdef USE_FCOMI
// find min, max of the triangle in x-direction, and test for overlap in X
if(FCMin3(v0.x, v1.x, v2.x)>extents.x) return false;
if(FCMax3(v0.x, v1.x, v2.x)<-extents.x) return false;
// same for Y
v0.y = mLeafVerts[0].y - center.y;
v1.y = mLeafVerts[1].y - center.y;
v2.y = mLeafVerts[2].y - center.y;
if(FCMin3(v0.y, v1.y, v2.y)>extents.y) return false;
if(FCMax3(v0.y, v1.y, v2.y)<-extents.y) return false;
// same for Z
v0.z = mLeafVerts[0].z - center.z;
v1.z = mLeafVerts[1].z - center.z;
v2.z = mLeafVerts[2].z - center.z;
if(FCMin3(v0.z, v1.z, v2.z)>extents.z) return false;
if(FCMax3(v0.z, v1.z, v2.z)<-extents.z) return false;
#else
float min,max;
// Find min, max of the triangle in x-direction, and test for overlap in X
FINDMINMAX(v0.x, v1.x, v2.x, min, max);
if(min>extents.x || max<-extents.x) return false;
// Same for Y
v0.y = mLeafVerts[0].y - center.y;
v1.y = mLeafVerts[1].y - center.y;
v2.y = mLeafVerts[2].y - center.y;
FINDMINMAX(v0.y, v1.y, v2.y, min, max);
if(min>extents.y || max<-extents.y) return false;
// Same for Z
v0.z = mLeafVerts[0].z - center.z;
v1.z = mLeafVerts[1].z - center.z;
v2.z = mLeafVerts[2].z - center.z;
FINDMINMAX(v0.z, v1.z, v2.z, min, max);
if(min>extents.z || max<-extents.z) return false;
#endif
// 2) Test if the box intersects the plane of the triangle
// compute plane equation of triangle: normal*x+d=0
// ### could be precomputed since we use the same leaf triangle several times
const Point e0 = v1 - v0;
const Point e1 = v2 - v1;
const Point normal = e0 ^ e1;
const float d = -normal|v0;
if(!planeBoxOverlap(normal, d, extents)) return false;
// 3) "Class III" tests
if(mFullPrimBoxTest)
{
float rad;
float min, max;
// compute triangle edges
// - edges lazy evaluated to take advantage of early exits
// - fabs precomputed (half less work, possible since extents are always >0)
// - customized macros to take advantage of the null component
// - axis vector discarded, possibly saves useless movs
const float fey0 = fabsf(e0.y);
const float fez0 = fabsf(e0.z);
AXISTEST_X01(e0.z, e0.y, fez0, fey0);
const float fex0 = fabsf(e0.x);
AXISTEST_Y02(e0.z, e0.x, fez0, fex0);
AXISTEST_Z12(e0.y, e0.x, fey0, fex0);
const float fey1 = fabsf(e1.y);
const float fez1 = fabsf(e1.z);
AXISTEST_X01(e1.z, e1.y, fez1, fey1);
const float fex1 = fabsf(e1.x);
AXISTEST_Y02(e1.z, e1.x, fez1, fex1);
AXISTEST_Z0(e1.y, e1.x, fey1, fex1);
const Point e2 = mLeafVerts[0] - mLeafVerts[2];
const float fey2 = fabsf(e2.y);
const float fez2 = fabsf(e2.z);
AXISTEST_X2(e2.z, e2.y, fez2, fey2);
const float fex2 = fabsf(e2.x);
AXISTEST_Y1(e2.z, e2.x, fez2, fex2);
AXISTEST_Z12(e2.y, e2.x, fey2, fex2);
}
return true;
}
//! if USE_EPSILON_TEST is true then we do a check (if |dv|<EPSILON then dv=0.0;) else no check is done (which is less robust, but faster)
#define USE_EPSILON_TEST
#define LOCAL_EPSILON 0.000001f
//! sort so that a<=b
#define SORT(a,b) \
if(a>b) \
{ \
const float c=a; \
a=b; \
b=c; \
}
//! Edge to edge test based on Franlin Antonio's gem: "Faster Line Segment Intersection", in Graphics Gems III, pp. 199-202
#define EDGE_EDGE_TEST(V0, U0, U1) \
Bx = U0[i0] - U1[i0]; \
By = U0[i1] - U1[i1]; \
Cx = V0[i0] - U0[i0]; \
Cy = V0[i1] - U0[i1]; \
f = Ay*Bx - Ax*By; \
d = By*Cx - Bx*Cy; \
if((f>0.0f && d>=0.0f && d<=f) || (f<0.0f && d<=0.0f && d>=f)) \
{ \
const float e=Ax*Cy - Ay*Cx; \
if(f>0.0f) \
{ \
if(e>=0.0f && e<=f) return 1; \
} \
else \
{ \
if(e<=0.0f && e>=f) return 1; \
} \
}
//! TO BE DOCUMENTED
#define EDGE_AGAINST_TRI_EDGES(V0, V1, U0, U1, U2) \
{ \
float Bx,By,Cx,Cy,d,f; \
const float Ax = V1[i0] - V0[i0]; \
const float Ay = V1[i1] - V0[i1]; \
/* test edge U0,U1 against V0,V1 */ \
EDGE_EDGE_TEST(V0, U0, U1); \
/* test edge U1,U2 against V0,V1 */ \
EDGE_EDGE_TEST(V0, U1, U2); \
/* test edge U2,U1 against V0,V1 */ \
EDGE_EDGE_TEST(V0, U2, U0); \
}
//! TO BE DOCUMENTED
#define POINT_IN_TRI(V0, U0, U1, U2) \
{ \
/* is T1 completly inside T2? */ \
/* check if V0 is inside tri(U0,U1,U2) */ \
float a = U1[i1] - U0[i1]; \
float b = -(U1[i0] - U0[i0]); \
float c = -a*U0[i0] - b*U0[i1]; \
float d0 = a*V0[i0] + b*V0[i1] + c; \
\
a = U2[i1] - U1[i1]; \
b = -(U2[i0] - U1[i0]); \
c = -a*U1[i0] - b*U1[i1]; \
const float d1 = a*V0[i0] + b*V0[i1] + c; \
\
a = U0[i1] - U2[i1]; \
b = -(U0[i0] - U2[i0]); \
c = -a*U2[i0] - b*U2[i1]; \
const float d2 = a*V0[i0] + b*V0[i1] + c; \
if(d0*d1>0.0f) \
{ \
if(d0*d2>0.0f) return 1; \
} \
}
//! TO BE DOCUMENTED
bool CoplanarTriTri(const Point& n, const Point& v0, const Point& v1, const Point& v2, const Point& u0, const Point& u1, const Point& u2)
{
float A[3];
short i0,i1;
/* first project onto an axis-aligned plane, that maximizes the area */
/* of the triangles, compute indices: i0,i1. */
A[0] = fabsf(n[0]);
A[1] = fabsf(n[1]);
A[2] = fabsf(n[2]);
if(A[0]>A[1])
{
if(A[0]>A[2])
{
i0=1; /* A[0] is greatest */
i1=2;
}
else
{
i0=0; /* A[2] is greatest */
i1=1;
}
}
else /* A[0]<=A[1] */
{
if(A[2]>A[1])
{
i0=0; /* A[2] is greatest */
i1=1;
}
else
{
i0=0; /* A[1] is greatest */
i1=2;
}
}
/* test all edges of triangle 1 against the edges of triangle 2 */
EDGE_AGAINST_TRI_EDGES(v0, v1, u0, u1, u2);
EDGE_AGAINST_TRI_EDGES(v1, v2, u0, u1, u2);
EDGE_AGAINST_TRI_EDGES(v2, v0, u0, u1, u2);
/* finally, test if tri1 is totally contained in tri2 or vice versa */
POINT_IN_TRI(v0, u0, u1, u2);
POINT_IN_TRI(u0, v0, v1, v2);
return 0;
}
//! TO BE DOCUMENTED
#define NEWCOMPUTE_INTERVALS(VV0, VV1, VV2, D0, D1, D2, D0D1, D0D2, A, B, C, X0, X1) \
{ \
if(D0D1>0.0f) \
{ \
/* here we know that D0D2<=0.0 */ \
/* that is D0, D1 are on the same side, D2 on the other or on the plane */ \
A=VV2; B=(VV0 - VV2)*D2; C=(VV1 - VV2)*D2; X0=D2 - D0; X1=D2 - D1; \
} \
else if(D0D2>0.0f) \
{ \
/* here we know that d0d1<=0.0 */ \
A=VV1; B=(VV0 - VV1)*D1; C=(VV2 - VV1)*D1; X0=D1 - D0; X1=D1 - D2; \
} \
else if(D1*D2>0.0f || D0!=0.0f) \
{ \
/* here we know that d0d1<=0.0 or that D0!=0.0 */ \
A=VV0; B=(VV1 - VV0)*D0; C=(VV2 - VV0)*D0; X0=D0 - D1; X1=D0 - D2; \
} \
else if(D1!=0.0f) \
{ \
A=VV1; B=(VV0 - VV1)*D1; C=(VV2 - VV1)*D1; X0=D1 - D0; X1=D1 - D2; \
} \
else if(D2!=0.0f) \
{ \
A=VV2; B=(VV0 - VV2)*D2; C=(VV1 - VV2)*D2; X0=D2 - D0; X1=D2 - D1; \
} \
else \
{ \
/* triangles are coplanar */ \
return CoplanarTriTri(N1, V0, V1, V2, U0, U1, U2); \
} \
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Triangle/triangle intersection test routine,
* by Tomas Moller, 1997.
* See article "A Fast Triangle-Triangle Intersection Test",
* Journal of Graphics Tools, 2(2), 1997
*
* Updated June 1999: removed the divisions -- a little faster now!
* Updated October 1999: added {} to CROSS and SUB macros
*
* int NoDivTriTriIsect(float V0[3],float V1[3],float V2[3],
* float U0[3],float U1[3],float U2[3])
*
* \param V0 [in] triangle 0, vertex 0
* \param V1 [in] triangle 0, vertex 1
* \param V2 [in] triangle 0, vertex 2
* \param U0 [in] triangle 1, vertex 0
* \param U1 [in] triangle 1, vertex 1
* \param U2 [in] triangle 1, vertex 2
* \return true if triangles overlap
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
__forceinline bool AABBTreeCollider::TriTriOverlap(const Point& V0, const Point& V1, const Point& V2, const Point& U0, const Point& U1, const Point& U2)
{
// Stats
mNbPrimPrimTests++;
// Compute plane equation of triangle(V0,V1,V2)
Point E1 = V1 - V0;
Point E2 = V2 - V0;
const Point N1 = E1 ^ E2;
const float d1 =-N1 | V0;
// Plane equation 1: N1.X+d1=0
// Put U0,U1,U2 into plane equation 1 to compute signed distances to the plane
float du0 = (N1|U0) + d1;
float du1 = (N1|U1) + d1;
float du2 = (N1|U2) + d1;
// Coplanarity robustness check
#ifdef USE_EPSILON_TEST
if(fabsf(du0)<LOCAL_EPSILON) du0 = 0.0f;
if(fabsf(du1)<LOCAL_EPSILON) du1 = 0.0f;
if(fabsf(du2)<LOCAL_EPSILON) du2 = 0.0f;
#endif
const float du0du1 = du0 * du1;
const float du0du2 = du0 * du2;
if(du0du1>0.0f && du0du2>0.0f) // same sign on all of them + not equal 0 ?
return 0; // no intersection occurs
// Compute plane of triangle (U0,U1,U2)
E1 = U1 - U0;
E2 = U2 - U0;
const Point N2 = E1 ^ E2;
const float d2=-N2 | U0;
// plane equation 2: N2.X+d2=0
// put V0,V1,V2 into plane equation 2
float dv0 = (N2|V0) + d2;
float dv1 = (N2|V1) + d2;
float dv2 = (N2|V2) + d2;
#ifdef USE_EPSILON_TEST
if(fabsf(dv0)<LOCAL_EPSILON) dv0 = 0.0f;
if(fabsf(dv1)<LOCAL_EPSILON) dv1 = 0.0f;
if(fabsf(dv2)<LOCAL_EPSILON) dv2 = 0.0f;
#endif
const float dv0dv1 = dv0 * dv1;
const float dv0dv2 = dv0 * dv2;
if(dv0dv1>0.0f && dv0dv2>0.0f) // same sign on all of them + not equal 0 ?
return 0; // no intersection occurs
// Compute direction of intersection line
const Point D = N1^N2;
// Compute and index to the largest component of D
float max=fabsf(D[0]);
short index=0;
float bb=fabsf(D[1]);
float cc=fabsf(D[2]);
if(bb>max) max=bb,index=1;
if(cc>max) max=cc,index=2;
// This is the simplified projection onto L
const float vp0 = V0[index];
const float vp1 = V1[index];
const float vp2 = V2[index];
const float up0 = U0[index];
const float up1 = U1[index];
const float up2 = U2[index];
// Compute interval for triangle 1
float a,b,c,x0,x1;
NEWCOMPUTE_INTERVALS(vp0,vp1,vp2,dv0,dv1,dv2,dv0dv1,dv0dv2,a,b,c,x0,x1);
// Compute interval for triangle 2
float d,e,f,y0,y1;
NEWCOMPUTE_INTERVALS(up0,up1,up2,du0,du1,du2,du0du1,du0du2,d,e,f,y0,y1);
const float xx=x0*x1;
const float yy=y0*y1;
const float xxyy=xx*yy;
float isect1[2], isect2[2];
float tmp=a*xxyy;
isect1[0]=tmp+b*x1*yy;
isect1[1]=tmp+c*x0*yy;
tmp=d*xxyy;
isect2[0]=tmp+e*xx*y1;
isect2[1]=tmp+f*xx*y0;
SORT(isect1[0],isect1[1]);
SORT(isect2[0],isect2[1]);
if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return 0;
return 1;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Constructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
AABBTreeCollider::AABBTreeCollider() :
mUserData0(0),
mUserData1(0),
mObj0Callback(null),
mObj1Callback(null),
mNbBVBVTests(0),
mNbPrimPrimTests(0),
mNbBVPrimTests(0),
mFullBoxBoxTest(true),
mFullPrimBoxTest(true),
mFirstContact(false),
mTemporalCoherence(false)
{
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Destructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
AABBTreeCollider::~AABBTreeCollider()
{
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Generic collision query for generic OPCODE models. After the call, access the results with:
* - GetContactStatus()
* - GetNbPairs()
* - GetPairs()
*
* \param cache [in] collision cache for model pointers and a colliding pair of primitives
* \param world0 [in] world matrix for first object
* \param world1 [in] world matrix for second object
* \return true if success
* \warning SCALE NOT SUPPORTED. The matrices must contain rotation & translation parts only.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBTreeCollider::Collide(BVTCache& cache, const Matrix4x4& world0, const Matrix4x4& world1)
{
// Checkings
if(!cache.Model0 || !cache.Model1) return false;
if(cache.Model0->HasLeafNodes()!=cache.Model1->HasLeafNodes()) return false;
if(cache.Model0->IsQuantized()!=cache.Model1->IsQuantized()) return false;
// Simple double-dispatch
if(!cache.Model0->HasLeafNodes())
{
if(cache.Model0->IsQuantized())
{
const AABBQuantizedNoLeafTree* T0 = (const AABBQuantizedNoLeafTree*)cache.Model0->GetTree();
const AABBQuantizedNoLeafTree* T1 = (const AABBQuantizedNoLeafTree*)cache.Model1->GetTree();
return Collide(T0, T1, world0, world1, &cache);
}
else
{
const AABBNoLeafTree* T0 = (const AABBNoLeafTree*)cache.Model0->GetTree();
const AABBNoLeafTree* T1 = (const AABBNoLeafTree*)cache.Model1->GetTree();
return Collide(T0, T1, world0, world1, &cache);
}
}
else
{
if(cache.Model0->IsQuantized())
{
const AABBQuantizedTree* T0 = (const AABBQuantizedTree*)cache.Model0->GetTree();
const AABBQuantizedTree* T1 = (const AABBQuantizedTree*)cache.Model1->GetTree();
return Collide(T0, T1, world0, world1, &cache);
}
else
{
const AABBCollisionTree* T0 = (const AABBCollisionTree*)cache.Model0->GetTree();
const AABBCollisionTree* T1 = (const AABBCollisionTree*)cache.Model1->GetTree();
return Collide(T0, T1, world0, world1, &cache);
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* A method to initialize a collision query :
* - reset stats & contact status
* - setup matrices
*
* \param world0 [in] world matrix for first object
* \param world1 [in] world matrix for second object
* \warning SCALE NOT SUPPORTED. The matrices must contain rotation & translation parts only.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::InitQuery(const Matrix4x4& world0, const Matrix4x4& world1)
{
// Reset stats & contact status
mContact = false;
mNbBVBVTests = 0;
mNbPrimPrimTests = 0;
mNbBVPrimTests = 0;
mPairs.Reset();
// Setup matrices
Matrix4x4 InvWorld0, InvWorld1;
InvertPRMatrix(InvWorld0, world0);
InvertPRMatrix(InvWorld1, world1);
Matrix4x4 World0to1 = world0 * InvWorld1;
Matrix4x4 World1to0 = world1 * InvWorld0;
mR0to1 = World0to1; World0to1.GetTrans(mT0to1);
mR1to0 = World1to0; World1to0.GetTrans(mT1to0);
// Precompute absolute 1-to-0 rotation matrix
for(udword i=0;i<3;i++)
{
for(udword j=0;j<3;j++)
{
// Epsilon value prevents floating-point inaccuracies (strategy borrowed from RAPID)
mAR.m[i][j] = 1e-6f + fabsf(mR1to0.m[i][j]);
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* A method to take advantage of temporal coherence.
* \param cache [in] cache for a pair of previously colliding primitives
* \warning only works for "First Contact" mode
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBTreeCollider::CheckTemporalCoherence(Pair* cache)
{
// Checkings
if(!cache) return false;
// Test previously colliding primitives first
if(mTemporalCoherence && mFirstContact)
{
PrimTest(cache->id0, cache->id1);
if(mContact) return true;
}
return false;
}
#define UPDATE_CACHE \
if(cache && mContact) \
{ \
cache->id0 = mPairs.GetEntry(0); \
cache->id1 = mPairs.GetEntry(1); \
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Collision query for normal AABB trees.
* \param tree0 [in] AABB tree from first object
* \param tree1 [in] AABB tree from second object
* \param world0 [in] world matrix for first object
* \param world1 [in] world matrix for second object
* \param cache [in/out] cache for a pair of previously colliding primitives
* \return true if success
* \warning SCALE NOT SUPPORTED. The matrices must contain rotation & translation parts only.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBTreeCollider::Collide(const AABBCollisionTree* tree0, const AABBCollisionTree* tree1, const Matrix4x4& world0, const Matrix4x4& world1, Pair* cache)
{
// Checkings
if(!tree0 || !tree1) return false;
if(!mObj0Callback || !mObj1Callback) return false;
// Init collision query
InitQuery(world0, world1);
// Check previous state
if(CheckTemporalCoherence(cache)) return true;
// Perform collision query
_Collide(tree0->GetNodes(), tree1->GetNodes());
UPDATE_CACHE
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Collision query for no-leaf AABB trees.
* \param tree0 [in] AABB tree from first object
* \param tree1 [in] AABB tree from second object
* \param world0 [in] world matrix for first object
* \param world1 [in] world matrix for second object
* \param cache [in/out] cache for a pair of previously colliding primitives
* \return true if success
* \warning SCALE NOT SUPPORTED. The matrices must contain rotation & translation parts only.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBTreeCollider::Collide(const AABBNoLeafTree* tree0, const AABBNoLeafTree* tree1, const Matrix4x4& world0, const Matrix4x4& world1, Pair* cache)
{
// Checkings
if(!tree0 || !tree1) return false;
if(!mObj0Callback || !mObj1Callback) return false;
// Init collision query
InitQuery(world0, world1);
// Check previous state
if(CheckTemporalCoherence(cache)) return true;
// Perform collision query
_Collide(tree0->GetNodes(), tree1->GetNodes());
UPDATE_CACHE
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Collision query for quantized AABB trees.
* \param tree0 [in] AABB tree from first object
* \param tree1 [in] AABB tree from second object
* \param world0 [in] world matrix for first object
* \param world1 [in] world matrix for second object
* \param cache [in/out] cache for a pair of previously colliding primitives
* \return true if success
* \warning SCALE NOT SUPPORTED. The matrices must contain rotation & translation parts only.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBTreeCollider::Collide(const AABBQuantizedTree* tree0, const AABBQuantizedTree* tree1, const Matrix4x4& world0, const Matrix4x4& world1, Pair* cache)
{
// Checkings
if(!tree0 || !tree1) return false;
if(!mObj0Callback || !mObj1Callback) return false;
// Init collision query
InitQuery(world0, world1);
// Check previous state
if(CheckTemporalCoherence(cache)) return true;
// Setup dequantization coeffs
mCenterCoeff0 = tree0->mCenterCoeff;
mExtentsCoeff0 = tree0->mExtentsCoeff;
mCenterCoeff1 = tree1->mCenterCoeff;
mExtentsCoeff1 = tree1->mExtentsCoeff;
// Dequantize box A
const AABBQuantizedNode* N0 = tree0->GetNodes();
const Point a(float(N0->mAABB.mExtents[0]) * mExtentsCoeff0.x, float(N0->mAABB.mExtents[1]) * mExtentsCoeff0.y, float(N0->mAABB.mExtents[2]) * mExtentsCoeff0.z);
const Point Pa(float(N0->mAABB.mCenter[0]) * mCenterCoeff0.x, float(N0->mAABB.mCenter[1]) * mCenterCoeff0.y, float(N0->mAABB.mCenter[2]) * mCenterCoeff0.z);
// Dequantize box B
const AABBQuantizedNode* N1 = tree1->GetNodes();
const Point b(float(N1->mAABB.mExtents[0]) * mExtentsCoeff1.x, float(N1->mAABB.mExtents[1]) * mExtentsCoeff1.y, float(N1->mAABB.mExtents[2]) * mExtentsCoeff1.z);
const Point Pb(float(N1->mAABB.mCenter[0]) * mCenterCoeff1.x, float(N1->mAABB.mCenter[1]) * mCenterCoeff1.y, float(N1->mAABB.mCenter[2]) * mCenterCoeff1.z);
// Perform collision query
_Collide(N0, N1, a, Pa, b, Pb);
UPDATE_CACHE
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Collision query for quantized no-leaf AABB trees.
* \param tree0 [in] AABB tree from first object
* \param tree1 [in] AABB tree from second object
* \param world0 [in] world matrix for first object
* \param world1 [in] world matrix for second object
* \param cache [in/out] cache for a pair of previously colliding primitives
* \return true if success
* \warning SCALE NOT SUPPORTED. The matrices must contain rotation & translation parts only.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBTreeCollider::Collide(const AABBQuantizedNoLeafTree* tree0, const AABBQuantizedNoLeafTree* tree1, const Matrix4x4& world0, const Matrix4x4& world1, Pair* cache)
{
// Checkings
if(!tree0 || !tree1) return false;
if(!mObj0Callback || !mObj1Callback) return false;
// Init collision query
InitQuery(world0, world1);
// Check previous state
if(CheckTemporalCoherence(cache)) return true;
// Setup dequantization coeffs
mCenterCoeff0 = tree0->mCenterCoeff;
mExtentsCoeff0 = tree0->mExtentsCoeff;
mCenterCoeff1 = tree1->mCenterCoeff;
mExtentsCoeff1 = tree1->mExtentsCoeff;
// Perform collision query
_Collide(tree0->GetNodes(), tree1->GetNodes());
UPDATE_CACHE
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Standard trees
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// The normal AABB tree can use 2 different descent rules (with different performances)
//#define ORIGINAL_CODE //!< UNC-like descent rules
#define ALTERNATIVE_CODE //!< Alternative descent rules
#ifdef ORIGINAL_CODE
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive collision query for normal AABB trees.
* \param b0 [in] collision node from first tree
* \param b1 [in] collision node from second tree
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::_Collide(const AABBCollisionNode* b0, const AABBCollisionNode* b1)
{
// Perform BV-BV overlap test
if(!BoxBoxOverlap(b0->mAABB.mExtents, b0->mAABB.mCenter, b1->mAABB.mExtents, b1->mAABB.mCenter)) return;
if(b0->IsLeaf() && b1->IsLeaf()) { PrimTest(b0->GetPrimitive(), b1->GetPrimitive()); return; }
if(b1->IsLeaf() || (!b0->IsLeaf() && (b0->GetSize() > b1->GetSize())))
{
_Collide(b0->GetNeg(), b1);
if(mFirstContact && mContact) return;
_Collide(b0->GetPos(), b1);
}
else
{
_Collide(b0, b1->GetNeg());
if(mFirstContact && mContact) return;
_Collide(b0, b1->GetPos());
}
}
#endif
#ifdef ALTERNATIVE_CODE
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive collision query for normal AABB trees.
* \param b0 [in] collision node from first tree
* \param b1 [in] collision node from second tree
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::_Collide(const AABBCollisionNode* b0, const AABBCollisionNode* b1)
{
// Perform BV-BV overlap test
if(!BoxBoxOverlap(b0->mAABB.mExtents, b0->mAABB.mCenter, b1->mAABB.mExtents, b1->mAABB.mCenter)) return;
if(b0->IsLeaf())
{
if(b1->IsLeaf())
{
PrimTest(b0->GetPrimitive(), b1->GetPrimitive());
}
else
{
_Collide(b0, b1->GetNeg());
if(mFirstContact && mContact) return;
_Collide(b0, b1->GetPos());
}
}
else if(b1->IsLeaf())
{
_Collide(b0->GetNeg(), b1);
if(mFirstContact && mContact) return;
_Collide(b0->GetPos(), b1);
}
else
{
_Collide(b0->GetNeg(), b1->GetNeg());
if(mFirstContact && mContact) return;
_Collide(b0->GetNeg(), b1->GetPos());
if(mFirstContact && mContact) return;
_Collide(b0->GetPos(), b1->GetNeg());
if(mFirstContact && mContact) return;
_Collide(b0->GetPos(), b1->GetPos());
}
}
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// No-leaf trees
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Leaf-leaf test for two primitive indices.
* \param id0 [in] index from first leaf-triangle
* \param id1 [in] index from second leaf-triangle
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::PrimTest(udword id0, udword id1)
{
// Request vertices from the app
VertexPointers VP0; (mObj0Callback)(id0, VP0, mUserData0);
VertexPointers VP1; (mObj1Callback)(id1, VP1, mUserData1);
// Transform from space 1 to space 0
Point u0,u1,u2;
TransformPoint(u0, VP1.Vertex[0], mR1to0, mT1to0);
TransformPoint(u1, VP1.Vertex[1], mR1to0, mT1to0);
TransformPoint(u2, VP1.Vertex[2], mR1to0, mT1to0);
// Perform triangle-triangle overlap test
if(TriTriOverlap(*VP0.Vertex[0], *VP0.Vertex[1], *VP0.Vertex[2], u0, u1, u2))
{
// Keep track of colliding pairs
mPairs.Add(id0).Add(id1);
// Set contact status
mContact = true;
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Leaf-leaf test for a previously fetched triangle from tree A (in B's space) and a new leaf from B.
* \param id1 [in] leaf-triangle index from tree B
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
__forceinline void AABBTreeCollider::PrimTestTriIndex(udword id1)
{
// Request vertices from the app
VertexPointers VP; (mObj1Callback)(id1, VP, mUserData1);
// Perform triangle-triangle overlap test
if(TriTriOverlap(mLeafVerts[0], mLeafVerts[1], mLeafVerts[2], *VP.Vertex[0], *VP.Vertex[1], *VP.Vertex[2]))
{
// Keep track of colliding pairs
mPairs.Add(mLeafIndex).Add(id1);
// Set contact status
mContact = true;
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Leaf-leaf test for a previously fetched triangle from tree B (in A's space) and a new leaf from A.
* \param id0 [in] leaf-triangle index from tree A
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
__forceinline void AABBTreeCollider::PrimTestIndexTri(udword id0)
{
// Request vertices from the app
VertexPointers VP; (mObj0Callback)(id0, VP, mUserData0);
// Perform triangle-triangle overlap test
if(TriTriOverlap(mLeafVerts[0], mLeafVerts[1], mLeafVerts[2], *VP.Vertex[0], *VP.Vertex[1], *VP.Vertex[2]))
{
// Keep track of colliding pairs
mPairs.Add(id0).Add(mLeafIndex);
// Set contact status
mContact = true;
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive collision of a leaf node from A and a branch from B.
* \param b [in] collision node from second tree
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::_CollideTriBox(const AABBNoLeafNode* b)
{
// Perform triangle-box overlap test
if(!TriBoxOverlap(b->mAABB.mCenter, b->mAABB.mExtents)) return;
// Keep same triangle, deal with first child
if(b->HasLeaf()) PrimTestTriIndex(b->GetPrimitive());
else _CollideTriBox(b->GetPos());
if(mFirstContact && mContact) return;
// Keep same triangle, deal with second child
if(b->HasLeaf2()) PrimTestTriIndex(b->GetPrimitive2());
else _CollideTriBox(b->GetNeg());
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive collision of a leaf node from B and a branch from A.
* \param b [in] collision node from first tree
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::_CollideBoxTri(const AABBNoLeafNode* b)
{
// Perform triangle-box overlap test
if(!TriBoxOverlap(b->mAABB.mCenter, b->mAABB.mExtents)) return;
// Keep same triangle, deal with first child
if(b->HasLeaf()) PrimTestIndexTri(b->GetPrimitive());
else _CollideBoxTri(b->GetPos());
if(mFirstContact && mContact) return;
// Keep same triangle, deal with second child
if(b->HasLeaf2()) PrimTestIndexTri(b->GetPrimitive2());
else _CollideBoxTri(b->GetNeg());
}
//! Request triangle vertices from the app and transform them
#define FETCH_LEAF(primindex, callback, userdata, rot, trans) \
mLeafIndex = primindex; \
/* Request vertices from the app */ \
VertexPointers VP; (callback)(primindex, VP, userdata); \
/* Transform them in a common space */ \
TransformPoint(mLeafVerts[0], VP.Vertex[0], rot, trans); \
TransformPoint(mLeafVerts[1], VP.Vertex[1], rot, trans); \
TransformPoint(mLeafVerts[2], VP.Vertex[2], rot, trans);
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive collision query for no-leaf AABB trees.
* \param a [in] collision node from first tree
* \param b [in] collision node from second tree
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::_Collide(const AABBNoLeafNode* a, const AABBNoLeafNode* b)
{
// Perform BV-BV overlap test
if(!BoxBoxOverlap(a->mAABB.mExtents, a->mAABB.mCenter, b->mAABB.mExtents, b->mAABB.mCenter)) return;
// Catch leaf status
BOOL BHasLeaf = b->HasLeaf();
BOOL BHasLeaf2 = b->HasLeaf2();
if(a->HasLeaf())
{
FETCH_LEAF(a->GetPrimitive(), mObj0Callback, mUserData0, mR0to1, mT0to1)
if(BHasLeaf) PrimTestTriIndex(b->GetPrimitive());
else _CollideTriBox(b->GetPos());
if(mFirstContact && mContact) return;
if(BHasLeaf2) PrimTestTriIndex(b->GetPrimitive2());
else _CollideTriBox(b->GetNeg());
}
else
{
if(BHasLeaf)
{
FETCH_LEAF(b->GetPrimitive(), mObj1Callback, mUserData1, mR1to0, mT1to0)
_CollideBoxTri(a->GetPos());
}
else _Collide(a->GetPos(), b->GetPos());
if(mFirstContact && mContact) return;
if(BHasLeaf2)
{
FETCH_LEAF(b->GetPrimitive2(), mObj1Callback, mUserData1, mR1to0, mT1to0)
_CollideBoxTri(a->GetPos());
}
else _Collide(a->GetPos(), b->GetNeg());
}
if(mFirstContact && mContact) return;
if(a->HasLeaf2())
{
FETCH_LEAF(a->GetPrimitive2(), mObj0Callback, mUserData0, mR0to1, mT0to1)
if(BHasLeaf) PrimTestTriIndex(b->GetPrimitive());
else _CollideTriBox(b->GetPos());
if(mFirstContact && mContact) return;
if(BHasLeaf2) PrimTestTriIndex(b->GetPrimitive2());
else _CollideTriBox(b->GetNeg());
}
else
{
if(BHasLeaf)
{
// ### That leaf has possibly already been fetched
FETCH_LEAF(b->GetPrimitive(), mObj1Callback, mUserData1, mR1to0, mT1to0)
_CollideBoxTri(a->GetNeg());
}
else _Collide(a->GetNeg(), b->GetPos());
if(mFirstContact && mContact) return;
if(BHasLeaf2)
{
// ### That leaf has possibly already been fetched
FETCH_LEAF(b->GetPrimitive2(), mObj1Callback, mUserData1, mR1to0, mT1to0)
_CollideBoxTri(a->GetNeg());
}
else _Collide(a->GetNeg(), b->GetNeg());
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Quantized trees
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive collision query for quantized AABB trees.
* \param b0 [in] collision node from first tree
* \param b1 [in] collision node from second tree
* \param a [in] extent from box A
* \param Pa [in] center from box A
* \param b [in] extent from box B
* \param Pb [in] center from box B
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::_Collide(const AABBQuantizedNode* b0, const AABBQuantizedNode* b1, const Point& a, const Point& Pa, const Point& b, const Point& Pb)
{
// Perform BV-BV overlap test
if(!BoxBoxOverlap(a, Pa, b, Pb)) return;
if(b0->IsLeaf() && b1->IsLeaf()) { PrimTest(b0->GetPrimitive(), b1->GetPrimitive()); return; }
if(b1->IsLeaf() || (!b0->IsLeaf() && (b0->GetSize() > b1->GetSize())))
{
// Dequantize box
const QuantizedAABB* Box = &b0->GetNeg()->mAABB;
const Point negPa(float(Box->mCenter[0]) * mCenterCoeff0.x, float(Box->mCenter[1]) * mCenterCoeff0.y, float(Box->mCenter[2]) * mCenterCoeff0.z);
const Point nega(float(Box->mExtents[0]) * mExtentsCoeff0.x, float(Box->mExtents[1]) * mExtentsCoeff0.y, float(Box->mExtents[2]) * mExtentsCoeff0.z);
_Collide(b0->GetNeg(), b1, nega, negPa, b, Pb);
if(mFirstContact && mContact) return;
// Dequantize box
Box = &b0->GetPos()->mAABB;
const Point posPa(float(Box->mCenter[0]) * mCenterCoeff0.x, float(Box->mCenter[1]) * mCenterCoeff0.y, float(Box->mCenter[2]) * mCenterCoeff0.z);
const Point posa(float(Box->mExtents[0]) * mExtentsCoeff0.x, float(Box->mExtents[1]) * mExtentsCoeff0.y, float(Box->mExtents[2]) * mExtentsCoeff0.z);
_Collide(b0->GetPos(), b1, posa, posPa, b, Pb);
}
else
{
// Dequantize box
const QuantizedAABB* Box = &b1->GetNeg()->mAABB;
const Point negPb(float(Box->mCenter[0]) * mCenterCoeff1.x, float(Box->mCenter[1]) * mCenterCoeff1.y, float(Box->mCenter[2]) * mCenterCoeff1.z);
const Point negb(float(Box->mExtents[0]) * mExtentsCoeff1.x, float(Box->mExtents[1]) * mExtentsCoeff1.y, float(Box->mExtents[2]) * mExtentsCoeff1.z);
_Collide(b0, b1->GetNeg(), a, Pa, negb, negPb);
if(mFirstContact && mContact) return;
// Dequantize box
Box = &b1->GetPos()->mAABB;
const Point posPb(float(Box->mCenter[0]) * mCenterCoeff1.x, float(Box->mCenter[1]) * mCenterCoeff1.y, float(Box->mCenter[2]) * mCenterCoeff1.z);
const Point posb(float(Box->mExtents[0]) * mExtentsCoeff1.x, float(Box->mExtents[1]) * mExtentsCoeff1.y, float(Box->mExtents[2]) * mExtentsCoeff1.z);
_Collide(b0, b1->GetPos(), a, Pa, posb, posPb);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Quantized no-leaf trees
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive collision of a leaf node from A and a quantized branch from B.
* \param leaf [in] leaf triangle from first tree
* \param b [in] collision node from second tree
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::_CollideTriBox(const AABBQuantizedNoLeafNode* b)
{
// Dequantize box
const QuantizedAABB* bb = &b->mAABB;
const Point Pb(float(bb->mCenter[0]) * mCenterCoeff1.x, float(bb->mCenter[1]) * mCenterCoeff1.y, float(bb->mCenter[2]) * mCenterCoeff1.z);
const Point eb(float(bb->mExtents[0]) * mExtentsCoeff1.x, float(bb->mExtents[1]) * mExtentsCoeff1.y, float(bb->mExtents[2]) * mExtentsCoeff1.z);
// Perform triangle-box overlap test
if(!TriBoxOverlap(Pb, eb)) return;
if(b->HasLeaf()) PrimTestTriIndex(b->GetPrimitive());
else _CollideTriBox(b->GetPos());
if(mFirstContact && mContact) return;
if(b->HasLeaf2()) PrimTestTriIndex(b->GetPrimitive2());
else _CollideTriBox(b->GetNeg());
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive collision of a leaf node from B and a quantized branch from A.
* \param b [in] collision node from first tree
* \param leaf [in] leaf triangle from second tree
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::_CollideBoxTri(const AABBQuantizedNoLeafNode* b)
{
// Dequantize box
const QuantizedAABB* bb = &b->mAABB;
const Point Pa(float(bb->mCenter[0]) * mCenterCoeff0.x, float(bb->mCenter[1]) * mCenterCoeff0.y, float(bb->mCenter[2]) * mCenterCoeff0.z);
const Point ea(float(bb->mExtents[0]) * mExtentsCoeff0.x, float(bb->mExtents[1]) * mExtentsCoeff0.y, float(bb->mExtents[2]) * mExtentsCoeff0.z);
// Perform triangle-box overlap test
if(!TriBoxOverlap(Pa, ea)) return;
if(b->HasLeaf()) PrimTestIndexTri(b->GetPrimitive());
else _CollideBoxTri(b->GetPos());
if(mFirstContact && mContact) return;
if(b->HasLeaf2()) PrimTestIndexTri(b->GetPrimitive2());
else _CollideBoxTri(b->GetNeg());
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Recursive collision query for quantized no-leaf AABB trees.
* \param a [in] collision node from first tree
* \param b [in] collision node from second tree
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void AABBTreeCollider::_Collide(const AABBQuantizedNoLeafNode* a, const AABBQuantizedNoLeafNode* b)
{
// Dequantize box A
const QuantizedAABB* ab = &a->mAABB;
const Point Pa(float(ab->mCenter[0]) * mCenterCoeff0.x, float(ab->mCenter[1]) * mCenterCoeff0.y, float(ab->mCenter[2]) * mCenterCoeff0.z);
const Point ea(float(ab->mExtents[0]) * mExtentsCoeff0.x, float(ab->mExtents[1]) * mExtentsCoeff0.y, float(ab->mExtents[2]) * mExtentsCoeff0.z);
// Dequantize box B
const QuantizedAABB* bb = &b->mAABB;
const Point Pb(float(bb->mCenter[0]) * mCenterCoeff1.x, float(bb->mCenter[1]) * mCenterCoeff1.y, float(bb->mCenter[2]) * mCenterCoeff1.z);
const Point eb(float(bb->mExtents[0]) * mExtentsCoeff1.x, float(bb->mExtents[1]) * mExtentsCoeff1.y, float(bb->mExtents[2]) * mExtentsCoeff1.z);
// Perform BV-BV overlap test
if(!BoxBoxOverlap(ea, Pa, eb, Pb)) return;
// Catch leaf status
BOOL BHasLeaf = b->HasLeaf();
BOOL BHasLeaf2 = b->HasLeaf2();
if(a->HasLeaf())
{
FETCH_LEAF(a->GetPrimitive(), mObj0Callback, mUserData0, mR0to1, mT0to1)
if(BHasLeaf) PrimTestTriIndex( b->GetPrimitive());
else _CollideTriBox(b->GetPos());
if(mFirstContact && mContact) return;
if(BHasLeaf2) PrimTestTriIndex(b->GetPrimitive2());
else _CollideTriBox(b->GetNeg());
}
else
{
if(BHasLeaf)
{
FETCH_LEAF(b->GetPrimitive(), mObj1Callback, mUserData1, mR1to0, mT1to0)
_CollideBoxTri(a->GetPos());
}
else _Collide(a->GetPos(), b->GetPos());
if(mFirstContact && mContact) return;
if(BHasLeaf2)
{
FETCH_LEAF(b->GetPrimitive2(), mObj1Callback, mUserData1, mR1to0, mT1to0)
_CollideBoxTri(a->GetPos());
}
else _Collide(a->GetPos(), b->GetNeg());
}
if(mFirstContact && mContact) return;
if(a->HasLeaf2())
{
FETCH_LEAF(a->GetPrimitive2(), mObj0Callback, mUserData0, mR0to1, mT0to1)
if(BHasLeaf) PrimTestTriIndex(b->GetPrimitive());
else _CollideTriBox(b->GetPos());
if(mFirstContact && mContact) return;
if(BHasLeaf2) PrimTestTriIndex(b->GetPrimitive2());
else _CollideTriBox(b->GetNeg());
}
else
{
if(BHasLeaf)
{
// ### That leaf has possibly already been fetched
FETCH_LEAF(b->GetPrimitive(), mObj1Callback, mUserData1, mR1to0, mT1to0)
_CollideBoxTri(a->GetNeg());
}
else _Collide(a->GetNeg(), b->GetPos());
if(mFirstContact && mContact) return;
if(BHasLeaf2)
{
// ### That leaf has possibly already been fetched
FETCH_LEAF(b->GetPrimitive2(), mObj1Callback, mUserData1, mR1to0, mT1to0)
_CollideBoxTri(a->GetNeg());
}
else _Collide(a->GetNeg(), b->GetNeg());
}
}
// END-OF-FILE
|