1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
/* $Id: HFLod.cpp,v 1.1 2002/08/28 22:44:52 mrq Exp $
**
** Ark - Libraries, Tools & Programs for MMORPG developpements.
** Copyright (C) 1999-2000 The Contributors of the Ark Project
** Please see the file "AUTHORS" for a list of contributors
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
// for std::min and std::max
#include <algorithm>
#include <iostream>
#include <sstream>
#include <math.h>
#include <Ark/ArkConfig.h>
#include <Ark/ArkRenderer.h>
#include <Modules/HeightField/HFLod.h>
#include <Modules/HeightField/HFWorld.h>
namespace Ark
{
// Allocate a new "size*size" height field
HeightFieldLod::HeightFieldLod (HeightField* hf) :
HeightFieldRender (hf),
m_LodData (0)
{
}
// Destroy the given Height-field.
HeightFieldLod::~HeightFieldLod ()
{
// delete 0 is legal and should do nothing
delete[] m_LodData;
}
bool
HeightFieldLod::Load(const String &path)
{
const size_t minSize = std::min(m_Heightfield->m_SizeX, m_Heightfield->m_SizeZ);
const double minDouble = static_cast< double >( minSize );
const double minLog2 = log( minDouble ) / log( 2.0 );
m_Depth = static_cast< size_t >( minLog2 );
std::cerr << "Depth is " << m_Depth << std::endl;
m_Size = (1 << m_Depth) + 1;
std::cerr << "Size is " << m_Size << std::endl;
m_Points = m_Size * m_Size;
std::cerr << "Vertices is " << m_Points << std::endl;
// Allocate vertices data
m_LodData = new VertexLodData[ m_Points ];
// Fill the data
const int center[2] = { m_Size >> 1, m_Size >> 1 };
const int northWest[2] = { 0, 0 };
const int northEast[2] = { m_Size - 1, 0 };
const int southEast[2] = { m_Size - 1, m_Size - 1 };
const int southWest[2] = { 0, m_Size - 1 };
{
size_t index;
// North West corner
index = 0;
m_LodData[ index ].set( 0.f, 0.f );
// North East corner
index = m_Size - 1;
m_LodData[ index ].set( 0.f, 0.f );
// South East corner
index = m_Points - 1;
m_LodData[ index ].set( 0.f, 0.f );
// South West corner
index = m_Points - m_Size;
m_LodData[ index ].set( 0.f, 0.f );
}
bool* processed = new bool[m_Points];
const size_t d = m_Depth + 1;
FillVertexLodData(processed, center, northEast, northWest, d);
FillVertexLodData(processed, center, northWest, southWest, d);
FillVertexLodData(processed, center, southWest, southEast, d);
FillVertexLodData(processed, center, southEast, northEast, d);
delete[] processed;
return true;
}
// ======
// Write the hf to a file
// ======
bool
HeightFieldLod::Write (const String& path)
{
assert (!"todo Write for LOD");
return false;
}
size_t
HeightFieldLod::FillVertexLodData(
bool* processed,
const int* top,
const int* left,
const int* right,
size_t depth
)
{
const int middle[2] = {
(left[0] + right[0]) >> 1,
(left[1] + right[1]) >> 1
};
const size_t index = middle[0] + m_Size * middle[1];
// already processed ?
if (! processed[index] )
{
processed[ index ] = true;
// Reference inside data
VertexLodData& ref = m_LodData[ index ];
// Set error and radius to zero, will be increased later
ref.m_Error = 0.f;
ref.m_Radius = 0.f;
// The error, is the max of the error for the 4 (or 2) children
// The radius is the max of ( children radius + distance to child )
// in our case, children are equidistant, distance to child is
// added later.
// If not a leaf, recurse to get child error and radius
if ( 0 < depth )
{
size_t childIndex;
// Recurse on the left side (inside, no test)
childIndex = FillVertexLodData(processed, middle, top, left, depth-1);
ref.m_Error = std::max(ref.m_Error, m_LodData[childIndex].m_Error);
ref.m_Radius = std::max(ref.m_Radius, m_LodData[childIndex].m_Radius);
// Recurse on the right side (inside, no test)
childIndex = FillVertexLodData(processed, middle, right, top, depth-1);
ref.m_Error = std::max(ref.m_Error, m_LodData[childIndex].m_Error);
ref.m_Radius = std::max(ref.m_Radius, m_LodData[childIndex].m_Radius);
// Coordinates for outside tests
const int bottom[2] =
{
left[0] + right[0] - top[0],
left[1] + right[1] - top[1]
};
// Test whether or not bottom is inside
if ( (0 <= bottom[0]) && (bottom[0] < (int)m_Size)
&& (0 <= bottom[1]) && (bottom[1] < (int)m_Size) )
{
// Recurse on the left outside
childIndex = FillVertexLodData(processed, middle, left, bottom, depth-1);
ref.m_Error = std::max(ref.m_Error, m_LodData[childIndex].m_Error);
ref.m_Radius = std::max(ref.m_Radius, m_LodData[childIndex].m_Radius);
// Recurse on the right outside
childIndex = FillVertexLodData(processed, middle, bottom, right, depth-1);
ref.m_Error = std::max(ref.m_Error, m_LodData[childIndex].m_Error);
ref.m_Radius = std::max(ref.m_Radius, m_LodData[childIndex].m_Radius);
}
// compute radius for current vertex
const int dx = top[0] - middle[0];
const int dz = top[1] - middle[1];
const scalar distance2 = static_cast< scalar >( dx*dx + dz*dz ) / 2.f;
ref.m_Radius += sqrtf( distance2 );
}
// TODO get data from VertexBuffer XXX
// Now we've got inherited error and radius from children
// Compute intrinsic error, and add it to m_Error
//const size_t leftIndex = left[0] + m_Size * left[1];
//const size_t rightIndex = right[0] + m_Size * right[1];
// TODO get data from VertexBuffer XXX
// Linear interpolation, could be bilinear (later)
//const scalar nonRefined = ( m_LodData[leftIndex].m_Y + m_LodData[rightIndex].m_Y ) / 2.f;
// TODO get data from VertexBuffer XXX
// Take the bigger error
//const scalar localError = fabsf( nonRefined - ref.m_Y );
//ref.m_Error = std::max(ref.m_Error, localError);
}
// returns current index for computations
return index;
}
void
HeightFieldLod::Render (Renderer &renderer, const Camera& camera)
{
}
}
|