1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
|
/* $Id: HFQuadtree.cpp,v 1.24 2003/03/26 17:07:17 zongo Exp $
**
** Ark - Libraries, Tools & Programs for MMORPG developpements.
** Copyright (C) 1999-2003 The Contributors of the Ark Project
** Please see the file "AUTHORS" for a list of contributors
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <algorithm>
#include <math.h>
#ifdef WIN32
#include <windows.h>
#endif
#include <GL/gl.h>
#include <Ark/ArkSystem.h>
#include <Ark/ArkRenderer.h>
#include <Modules/HeightField/HFWorld.h>
#include <Modules/HeightField/HFQuadtree.h>
static GLfloat g_fogBlackColor[4] = {0., 0., 0., 1.};
namespace Ark
{
// List of patch to render
typedef std::vector<Patch*> PatchList;
typedef std::vector<Patch*>::iterator PatchListIterator;
// =======================================================================
// Quadtree patch.
// =======================================================================
/* The terrain is meshed as follows:
...
+-+-+-+-+ x<---+
|\|/|\|/| |
...+-+-+-+-+... V
|/|\|/|\| z
+-+-+-+-+
...
So there are two types of vertices: those surrounded by
four triangles (x+z is odd), and those surrounded by
eight (x+z is even).
*/
class Patch : public QuadtreeNode
{
friend class QuadtreeRenderManager;
// I want to use a vector instead of a list for QuadtreeBlockList..
typedef std::vector<PrimitiveBlock> QuadtreeBlockList;
// we do not own these members
HeightField* m_Heightfield;
QuadtreeRenderManager* m_Manager;
// we manage these data
VertexBuffer m_Triangles;
VertexBuffer m_BlendedTriangles;
QuadtreeBlockList m_TriangleIndices;
QuadtreeBlockList m_BlendedTriangleIndices;
PrimitiveBlock m_BlackTriangleIndices;
// Material used in the m_Materials of QuadtreeRenderManager
std::vector<int> m_MaterialsUsed;
// This this the number of vertices in m_BlendedTriangles
int m_BlendedTriangleCount;
protected:
EntityList m_Entities;
public:
// Size of the patch
enum { SIZE=16 };
// I do not want them to be recomputed every frame
int m_MinX, m_MinZ;
/// offset from (0,0,0) to the patch lower corner
Vector3 m_Offset;
/// Center point of the patch
Vector3 m_CenterPoint;
bool m_Dirty;
bool m_CollisionDirty;
public:
Patch() :
QuadtreeNode(),
m_Heightfield(0),
m_Manager(0),
m_Dirty (true),
m_CollisionDirty (true)
{}
virtual ~Patch()
{
// Cleans the HF and manager
m_Heightfield = 0;
m_Manager = 0;
}
virtual void Build(HeightField* hf,
int minX, int minZ, int size,
QuadtreeRenderManager* manager)
{
assert(size == SIZE);
assert(hf);
assert(manager);
// Sets basic data
m_Heightfield = hf;
m_Manager = manager;
m_MinX = minX;
m_MinZ = minZ;
// Sets patch offset
m_Offset = hf->GetCoord(minX, minZ);
m_Triangles.SetFormat(VertexBuffer::VB_HAS_COORD|VertexBuffer::VB_HAS_NORMAL|VertexBuffer::VB_HAS_COLOR);
m_Triangles.Resize((SIZE+1) * (SIZE+1));
Validate();
}
// This function is declared after QuadtreeRenderManager
void RenderPatch();
void Validate()
{
const int maxX = m_MinX + SIZE;
const int maxZ = m_MinZ + SIZE;
const int sx = (int) m_Heightfield->m_SizeX - 1;
const int sz = (int) m_Heightfield->m_SizeZ - 1;
const int midX = (m_MinX + ((sx < maxX) ? sx : maxX)) / 2;
const int midZ = (m_MinZ + ((sx < maxZ) ? sx : maxZ)) / 2;
m_CenterPoint = m_Heightfield->GetCoord(midX, midZ);
int idx = 0;
for (int z = m_MinZ ; z <= maxZ ; z++)
{
for (int x = m_MinX ; x <= maxX ; x++)
{
const int rx = (sx < x) ? sx : x;
const int rz = (sz < z) ? sz : z;
Vector3 point = m_Heightfield->GetCoord(rx, rz);
// Adds point to bounding box
m_BBox.AddPoint(point);
m_Triangles.Coord(idx) = point;
m_Triangles.Normal(idx) = ComputeNormal (rx, rz, m_Triangles.Coord(idx));
Material *grd = m_Heightfield->GetGrd (rx, rz);
RGBA &rgba = m_Triangles.Color4(idx);
if (grd)
{
rgba.R = uchar (grd->m_Diffuse.R * 255.f);
rgba.G = uchar (grd->m_Diffuse.G * 255.f);
rgba.B = uchar (grd->m_Diffuse.B * 255.f);
rgba.A = 255;
}
else
{
rgba.R = rgba.G = rgba.B = rgba.A = 255;
}
++idx;
}
}
m_Dirty = false;
// std::cerr << "Patch BB is " << m_BBox.m_Min << " " << m_BBox.m_Max << std::endl;
BuildTriangleIndices();
}
/**
* Returns the ground material in the heightfield using patch coordinates.
*
* (0, 0) is the corner of the patch, not of the heightfield
*/
uchar Ground(int x, int z) const
{
const int hx = x + m_MinX;
const int hz = z + m_MinZ;
const int nx = m_Heightfield->m_SizeX - 1;
const int nz = m_Heightfield->m_SizeZ - 1;
const int mx = (nx<hx) ? nx : hx;
const int mz = (nz<hz) ? nz : hz;
return m_Heightfield->GetGround(mx, mz);
}
/// Add an entity to this patch..
void AddEntity (Entity *ent)
{
m_CollisionDirty = true;
EntityLI iterator = std::find(m_Entities.begin(), m_Entities.end(), ent);
if (iterator == m_Entities.end())
{
m_Entities.push_back(ent);
}
}
/// Remove an entity from this patch..
void RemoveEntity (Entity *ent)
{
m_CollisionDirty = true;
// Remove entity from list
m_Entities.erase(std::remove(m_Entities.begin(), m_Entities.end(), ent), m_Entities.end());
}
virtual void InvalidatePatches(const BBox& box)
{
if (m_BBox.Overlap(box))
{
m_Dirty = true;
}
}
/**
* Add all the patches entities to the provided list, checking that no
* entity is added twice in the list.
*/
void AddPatchEntsToList(EntityList &list)
{
for (EntityLI i = m_Entities.begin(); i != m_Entities.end(); ++i)
{
EntityLI found = std::find(list.begin(), list.end(), *i);
// Add *i to list if not already found
if (found == list.end())
{
list.push_back (*i);
}
}
}
void RayTrace (const Ray &ray, std::vector<int>& potentialquads)
{
// Needed for boundary checks in patch space
const Vector3& bbmin = m_BBox.m_Min;
const scalar size = static_cast<scalar>(SIZE);
Vector3 v0 = m_Heightfield->GetVectorInGridSpace( ray.m_From );
Vector3 v1 = m_Heightfield->GetVectorInGridSpace( ray.m_To );
scalar p0[2] = { v0.X - bbmin.X, v0.Z - bbmin.Z };
scalar p1[2] = { v1.X - bbmin.X, v1.Z - bbmin.Z };
// Corner for the quad
// -1 if not found
int cornerIndex = -1;
// Flipping of axis
bool transform[2] = { false, false };
int which = 0;
// Patch index moves
int index = 0;
int offset[2] = { 1, SIZE + 1 };
// Horizontal shift
if (p1[0] < p0[0])
{
transform[0] = true;
p0[0] = size - p0[0];
p1[0] = size - p1[0];
index += SIZE;
offset[0] = -offset[0];
}
// Vertical shift
if (p1[1] < p0[1])
{
transform[1] = true;
p0[1] = size - p0[1];
p1[1] = size - p1[1];
index += (SIZE + 1) * SIZE;
offset[1] = -offset[1];
}
// First bissectrice shift
if ((p1[0] - p0[0]) < (p1[1] - p0[1]))
{
which = 1;
}
const int other = 1-which;
const int right = offset[which];
const int up = offset[other];
// Select interval
const scalar minX = p0[which];
const scalar maxX = p1[which];
// Length along the abscisses
const scalar lengthX = maxX - minX;
// Height of the ray on this scale
const scalar startHeight = ray.m_From.Y;
const scalar endHeight = ray.m_To.Y;
const scalar diffHeight = endHeight - startHeight;
const scalar diffHeightPerX = diffHeight / lengthX;
// Length along the ordonnees
const scalar minY = p0[other];
const scalar lengthY = p1[other] - minY;
const scalar slope = lengthY / lengthX;
// Start position must be minX rounded down or 0
scalar startX = std::max(floorf(minX), 0.0f);
// We stay in 1 grid cell (endX-startX) is always bigger than (endY-startY)
if ((maxX - startX) < 1.0f)
{
// Push the corner and let the end function resolve the intersection
const int theX = static_cast<int>( v0.X );
const int theZ = static_cast<int>( v0.Z );
// std::cerr << "Vertical ray at " << theX << " " << theZ << std::endl;
potentialquads.push_back(theX);
potentialquads.push_back(theZ);
return;
}
// Look at Y position there
scalar lastY = (startX - minX) * slope + minY;
scalar floorY = floorf(lastY);
// Simple counter, must be > 1 to have intersection
// If we hit under the patch on the first test, we did not intersect
int testCount = 0;
// We are not yet in the patch
if (lastY < 0.0f)
{
// Recompute nearest integer X for Y at 0
const scalar shiftedX = (0.0f - minY) / slope + minX;
assert((startX < shiftedX) && "The new startX should be greater");
startX = std::max(floorf(shiftedX), 0.0f);
// Compute exact Y for this startX
lastY = (startX - minX) * slope + minY;
floorY = -1.f;
}
// shift by firstIndex difference
const int startIndex = static_cast<int>(startX);
index += startIndex * right;
// rayHeight, get increased by diffHeightPerX at each iteration
scalar currentRayHeight = startHeight + (startX - minX) * diffHeightPerX;
if (0.0f <= lastY)
{
// We have to manually check the first segment
// on the left side of the ray or patch
index += static_cast<int>(floorY) * up;
const Vector3& vertex0 = m_Triangles.Coord(index);
const Vector3& vertex1 = m_Triangles.Coord(index + up);
const scalar interp = (lastY - floorY) / 1.0f;
const scalar height = interp * vertex1.Y + (1.f - interp) * vertex0.Y;
if (currentRayHeight < height)
{
// We are already under the patch, return doing nothing
return;
}
++testCount;
}
const scalar endX = std::min(ceilf(maxX), size);
const int endIndex = static_cast<int>(endX);
// The computation is cranked one rank to the right
for (int i=startIndex ; i<endIndex ; ++i)
{
// Advancement ratio
const scalar x = static_cast<scalar>(i);
const scalar y = (x - minX) * slope + minY;
const scalar currentY = floorf(y);
// Goes one right
index += right;
const Vector3& vertex0 = m_Triangles.Coord(index);
// We went one line up
if (floorY < currentY)
{
// Goes up one level
index += up;
// Check against cell on the left
const Vector3& vertexL = m_Triangles.Coord(index - right);
const scalar interp = (currentY - lastY) / (y - lastY);
const scalar height = interp * vertex0.Y + (1.f - interp) * vertexL.Y;
const scalar rayHeight = startHeight + interp * diffHeightPerX;
if (rayHeight < height)
{
// We got under the patch, break from loop
cornerIndex = index - right;
break;
}
++testCount;
if (size <= currentY)
{
// We went out of the patch
break;
}
floorY = currentY;
}
// Check against cell on the top
currentRayHeight += diffHeightPerX;
const Vector3& vertexU = m_Triangles.Coord(index + up);
const scalar interp = (y - currentY) / 1.0f;
const scalar height = interp * vertexU.Y + (1.f - interp) * vertex0.Y;
if (currentRayHeight < height)
{
// We got under the patch, break from loop
cornerIndex = index - right;
break;
}
++testCount;
lastY = y;
}
// We got something
if ((0 <= cornerIndex) && (1 < testCount))
{
// Now we got the index, we must move it to the NorthWest side of the patch
if (transform[1])
cornerIndex -= SIZE+1;
if (transform[0])
cornerIndex -= 1;
const int row = cornerIndex % (SIZE+1);
const int line = cornerIndex / (SIZE+1);
potentialquads.push_back(m_MinX + row);
potentialquads.push_back(m_MinZ + line);
// std::cerr << "Intersection at " << (m_MinX + row) << " and " << (m_MinZ + line) << std::endl;
}
}
/**
* Make a list of potential colliders. If nothing has moved
* in the patch, we assume there can't be any collision.
* Note: we use a map to ensure there no collision is computed
* twice.
* Once this function has returned, the patch collision dirty
* flag is cleared.
*/
virtual void CollectColliders (ColliderList &list)
{
if (m_CollisionDirty == false)
return;
for (EntityLI iter1=m_Entities.begin() ; iter1!=m_Entities.end(); ++iter1)
{
Entity* entity1 = *iter1;
if (!(entity1->m_Flags & Entity::COLLISION))
continue;
for (EntityLI iter2=iter1 + 1 ; iter2!=m_Entities.end(); ++iter2)
{
Entity *entity2 = *iter2;
if (!(entity2->m_Flags & Entity::COLLISION) ||
((entity1->m_Flags & Entity::STATIC) &&
(entity2->m_Flags & Entity::STATIC)))
continue;
if (entity1->GetBBox().Overlap (entity2->GetBBox()))
{
list[ Collider(entity1,entity2) ] = true;
}
}
}
}
private:
Vector3 ComputeNormal (int x, int z, const Vector3& coord) const
{
const int nx = m_Heightfield->m_SizeX;
const int nz = m_Heightfield->m_SizeZ;
// Border gets Vertical Normal
if (x < 1 || z < 1 || (nx-1) < x || (nz-1) < z)
{
return Vector3(0.0f, 1.0f, 0.0f);
}
Vector3 p0 = m_Heightfield->GetCoord (x, z);
Vector3 pW = m_Heightfield->GetCoord (x-1, z);
Vector3 pN = m_Heightfield->GetCoord (x, z-1);
Vector3 pE = m_Heightfield->GetCoord (x+1, z);
Vector3 pS = m_Heightfield->GetCoord (x, z+1);
Vector3 normal;
normal += Vector3::ComputeNormal (p0, pW, pN);
normal += Vector3::ComputeNormal (p0, pN, pE);
normal += Vector3::ComputeNormal (p0, pE, pS);
normal += Vector3::ComputeNormal (p0, pS, pW);
normal.Normalize();
return normal;
}
void BuildTriangleIndices()
{
// empty existing list
m_TriangleIndices.resize(0);
m_BlendedTriangleIndices.resize(0);
m_BlackTriangleIndices.SetType(PRIM_TRIANGLES);
m_BlackTriangleIndices.SetEnabledSize(0);
// empty the material list too
m_MaterialsUsed.resize(0);
m_BlendedTriangles.SetFormat(
VertexBuffer::VB_HAS_COORD|
VertexBuffer::VB_HAS_NORMAL|
VertexBuffer::VB_HAS_COLOR);
// starting size
const int initialSize = SIZE * 3;
m_BlendedTriangles.Resize(initialSize);
m_BlendedTriangleCount = 0;
for (int mz0=0 ; mz0<SIZE ; ++mz0)
{
const int mz1 = mz0 + 1;
for (int mx0=0 ; mx0<SIZE ; ++mx0)
{
const int mx1 = mx0 + 1;
AddMaterial(mx0, mz0);
AddMaterial(mx0, mz1);
AddMaterial(mx1, mz1);
AddMaterial(mx1, mz0);
BuildTriangle (mx0, mz0, mx1, mz0, mx1, mz1);
BuildTriangle (mx1, mz1, mx0, mz1, mx0, mz0);
}
}
}
/**
* Adds a new material if necessary
*
* The material are indices in m_Materials in QuadtreeRenderManager
*
* Creates the associated PrimitiveBlock for blended and non-blended
* triangles using this material (any block can end up empty)
*/
void AddMaterial(int x, int z)
{
const int material = static_cast<int>(Ground(x,z));
std::vector<int>::iterator i;
i = std::find(m_MaterialsUsed.begin(), m_MaterialsUsed.end(), material);
if (i == m_MaterialsUsed.end())
{
m_MaterialsUsed.push_back(material);
// Non blended list of triangles
{
PrimitiveBlock pb;
pb.SetType (PRIM_TRIANGLES);
pb.SetEnabledSize(0);
m_TriangleIndices.push_back(pb);
}
// Blended list of triangles
{
PrimitiveBlock pb;
pb.SetType (PRIM_TRIANGLES);
pb.SetEnabledSize(0);
m_BlendedTriangleIndices.push_back(pb);
}
}
}
/**
* Returns the index in m_MaterialsUsed of a material.
*
* This is used to get access of primitive blocks for the given material
*/
int GetMaterialIndex (uchar material)
{
std::vector<int>::iterator i;
i = std::find(m_MaterialsUsed.begin(), m_MaterialsUsed.end(), material);
assert(i!=m_MaterialsUsed.end() && "material not found in list");
return std::distance(m_MaterialsUsed.begin(), i);
}
/**
* Build the blended triangles vertex buffer.
*
* Copy from m_Triangles at indexFrom to m_BlendedTriangles at indexTo
*/
void CopyVertex(int indexFrom, int indexTo, bool alpha)
{
const Vector3& point = m_Triangles.Coord(indexFrom);
const Vector3& normal = m_Triangles.Normal(indexFrom);
RGBA rgba = m_Triangles.Color4(indexFrom);
if (alpha)
{
rgba.A = 0;
}
m_BlendedTriangles.Coord (indexTo) = point;
m_BlendedTriangles.Normal(indexTo) = normal;
m_BlendedTriangles.Color4(indexTo) = rgba;
}
/**
* Add a blended triangle to a primitive block.
*
* The vertex buffer is built as needed.
*/
void AddBlendedTriangle(PrimitiveBlock& pb,
int index1, bool alpha1,
int index2, bool alpha2,
int index3, bool alpha3)
{
const int baseIndex = 3*m_BlendedTriangleCount;
++m_BlendedTriangleCount;
// Ensures vertex buffer is large enough
const int vbSize = m_BlendedTriangles.Size();
if (vbSize < (baseIndex+3))
{
m_BlendedTriangles.Resize(vbSize + (SIZE * 3));
}
// copy vertices
CopyVertex(index1, baseIndex+0, alpha1);
CopyVertex(index2, baseIndex+1, alpha2);
CopyVertex(index3, baseIndex+2, alpha3);
AddTriangle(pb, baseIndex+0, baseIndex+1, baseIndex+2);
// this is a special hack to get black triangles added
// alpha1 is 'false' only for the first call of AddBlendedTriangle
if (!alpha1)
{
AddTriangle(m_BlackTriangleIndices, baseIndex+0, baseIndex+1, baseIndex+2);
}
}
/**
* Add a non-blended triangle to a primitive block.
*/
void AddTriangle(PrimitiveBlock& pb, int index1, int index2, int index3)
{
const size_t triangleindex = pb.EnabledSize();
//std::cerr << "triangleindex=" << triangleindex << std::endl;
pb.Add(index1);
pb.Add(index2);
pb.Add(index3);
//std::cerr << "pb.Size()=" << pb.Size() << std::endl;
pb.SetEnabledSize(triangleindex + 3);
}
/**
* Build primitive blocks for 1 triangle.
*/
void BuildTriangle (int x1, int y1,
int x2, int y2,
int x3, int y3)
{
const int padding = SIZE + 1;
const int index1 = x1 + y1 * padding;
const int index2 = x2 + y2 * padding;
const int index3 = x3 + y3 * padding;
const uchar material1 = Ground (x1, y1);
const uchar material2 = Ground (x2, y2);
const uchar material3 = Ground (x3, y3);
const bool material2isMaterial1 = material1 == material2;
const bool material3isMaterial1 = material1 == material3;
// the three vertex have the same material.
if (material2isMaterial1 && material3isMaterial1)
{
// look for the material in the list
const int materialIndex = GetMaterialIndex(material1);
PrimitiveBlock &pb = m_TriangleIndices[materialIndex];
AddTriangle(pb, index1, index2, index3);
// done for this one
return;
}
// last equality relation :)
const bool material3isMaterial2 = material2 == material3;
// handles material 1 blended triangles
{
// look for the material in the list
const int materialIndex = GetMaterialIndex(material1);
PrimitiveBlock &pb = m_BlendedTriangleIndices[materialIndex];
// do we have to make the other corners transparent ?
const bool alpha2 = !material2isMaterial1;
const bool alpha3 = !material3isMaterial1;
AddBlendedTriangle(pb, index1, false, index2, alpha2, index3, alpha3);
// we must go to test material2 and 3, but at least one is different
}
// handles material 2 blended triangles
if (!material2isMaterial1)
{
// look for the material in the list
const int materialIndex = GetMaterialIndex(material2);
PrimitiveBlock &pb = m_BlendedTriangleIndices[materialIndex];
// do we have to make the other corners transparent ?
const bool alpha3 = !material3isMaterial2;
AddBlendedTriangle(pb, index1, true, index2, false, index3, alpha3);
}
if (!material3isMaterial1 && !material3isMaterial2)
{
// look for the material in the list
const int materialIndex = GetMaterialIndex(material3);
PrimitiveBlock &pb = m_BlendedTriangleIndices[materialIndex];
// we now know the 2 other corner must be transparent
AddBlendedTriangle(pb, index1, true, index2, true, index3, false);
}
}
};
// =======================================================================
struct RenderStats
{
int m_NumTris;
int m_NumFlushes;
} g_RenderStats;
bool g_UpdateVis = true;
//Sorter based on camera distance
class CameraSorter
{
Vector3 m_CameraPosition;
public:
bool operator()(Patch* p1, Patch* p2)
{
Vector3 cp1(
p1->m_CenterPoint.X - m_CameraPosition.X,
p1->m_CenterPoint.Y - m_CameraPosition.Y,
p1->m_CenterPoint.Z - m_CameraPosition.Z);
const scalar d1 = cp1.X*cp1.X + cp1.Y*cp1.Y + cp1.Z*cp1.Z;
Vector3 cp2(
p2->m_CenterPoint.X - m_CameraPosition.X,
p2->m_CenterPoint.Y - m_CameraPosition.Y,
p2->m_CenterPoint.Z - m_CameraPosition.Z);
const scalar d2 = cp2.X*cp2.X + cp2.Y*cp2.Y + cp2.Z*cp2.Z;
return d1<d2;
}
void SetCamera(const Camera& camera)
{ m_CameraPosition = camera.m_PointOfView; }
};
/**
*
*/
class QuadtreeRenderManager
{
// List of materials for rendering
Material m_Black;
MaterialList m_Materials;
// Renderer (set once, theorically)
Renderer* m_Renderer;
// Camera (set each frame)
const Camera* m_Camera;
CameraSorter m_Sorter;
// Fog color (for multipass back state)
const Color* m_FogColor;
// List of patches, approximatively sorted front to back
PatchList m_PatchList;
void FlushNormalTriangles(Material& material, const PrimitiveBlock &pb)
{
g_RenderStats.m_NumTris += pb.EnabledSize() / 3;
const int pflags = material.m_Passes[0].m_Flags;
material.m_Passes[0].m_Flags &= ~PASS_HAS_BLENDING;
m_Renderer->RenderBlock(material, pb.Type(), &pb[0], pb.EnabledSize());
material.m_Passes[0].m_Flags = pflags;
}
void FlushBlendTriangles(Material& material, const PrimitiveBlock &pb)
{
g_RenderStats.m_NumTris += pb.EnabledSize() / 3;
const int flags = material.m_Flags;
material.m_Flags &= ~(MATERIAL_HAS_PASS2 | MATERIAL_HAS_PASS3 | MATERIAL_HAS_PASS4);
m_Renderer->RenderBlock(material, pb.Type(), &pb[0], pb.EnabledSize());
material.m_Flags = flags;
}
public:
QuadtreeRenderManager (const MaterialList& materials) :
m_Black ("black"),
m_Renderer(0),
m_Camera(0)
{
SetMaterials (materials);
m_Black.m_Flags = MATERIAL_HAS_PASS1;
m_Black.m_Passes[0].m_Flags = 0;
m_Black.m_Passes[0].m_BlendColor = Color(0.f,0.f,0.f,1.f);
}
~QuadtreeRenderManager ()
{
ClearMaterials();
}
void ClearMaterials()
{
m_Materials.resize(0);
}
void SetMaterials(const MaterialList& materialList)
{
// Unref first previous materials set
ClearMaterials();
// Copy by ref the material list
const int materialCount = materialList.size();
m_Materials.resize(materialCount);
for (int material=0 ; material<materialCount ; ++material)
{
// these are MaterialPtr, get refs by copy
m_Materials[material] = materialList[material];
}
}
void SetRenderData(Renderer& render, const Camera& camera, const Color& fogColor)
{
m_Renderer = &render;
m_FogColor = &fogColor;
m_Camera = &camera;
m_Sorter.SetCamera(camera);
}
void AddPatch(Patch* patch)
{
assert(m_Camera && "Camera was not set, or NULL");
PatchListIterator i = std::lower_bound(m_PatchList.begin(), m_PatchList.end(), patch, m_Sorter);
m_PatchList.insert(i, patch);
}
void DrawPatches()
{
assert(m_Renderer && "Renderer was not set, or NULL");
++g_RenderStats.m_NumFlushes;
PatchListIterator i;
for (i=m_PatchList.begin() ; i!=m_PatchList.end() ; ++i)
{
Patch* current = *i;
/// Initialize the vertex buffer.
m_Renderer->SetActiveVB (current->m_Triangles);
m_Renderer->LockVB (0, current->m_Triangles.Size());
const int pbNormalCount = current->m_TriangleIndices.size();
for (int normal=0 ; normal<pbNormalCount ; ++normal)
{
const int materialUsed = current->m_MaterialsUsed[normal];
Material& material = *m_Materials[materialUsed];
PrimitiveBlock& pb = current->m_TriangleIndices[normal];
// Draw the "normal" non-blended triangles ('one material' tris)
FlushNormalTriangles(material, pb);
}
m_Renderer->UnlockVB();
}
const GLfloat fogColor[4] = { m_FogColor->R, m_FogColor->G, m_FogColor->B, m_FogColor->A };
for (i=m_PatchList.begin() ; i!=m_PatchList.end() ; ++i)
{
Patch* current = *i;
// Render 'em first black so additive blending will work.
if (0 < current->m_BlendedTriangleCount)
{
/// Initialize the blending vertex buffer.
m_Renderer->SetActiveVB (current->m_BlendedTriangles);
m_Renderer->LockVB (0, current->m_BlendedTriangles.Size());
glDisable (GL_COLOR_ARRAY);
//glDisable (GL_CULL_FACE);
glColor4f (0.0f, 0.0f, 0.0f, 1.0f);
glFogfv(GL_FOG_COLOR, g_fogBlackColor);
FlushNormalTriangles(m_Black, current->m_BlackTriangleIndices);
glFogfv(GL_FOG_COLOR, fogColor);
glColor4f (1.0f, 1.0f, 1.0f, 1.0f);
//glEnable (GL_CULL_FACE);
glEnable (GL_COLOR_ARRAY);
glColorMaterial(GL_FRONT, GL_DIFFUSE);
glEnable (GL_COLOR_MATERIAL);
const int blendCount = current->m_BlendedTriangleIndices.size();
for (int blend=0 ; blend<blendCount ; ++blend)
{
PrimitiveBlock& pb = current->m_BlendedTriangleIndices[blend];
// job done
if (pb.EnabledSize() <= 0)
continue;
// Render 'multiple terrain' triangles with blending.
//m_Renderer->OverrideVB ( VertexBuffer::VB_HAS_COLOR, m_CurPatch->m_Triangles);
const int materialUsed = current->m_MaterialsUsed[blend];
Material& material = *m_Materials[materialUsed];
FlushBlendTriangles(material, pb);
}
glColor4f (1.0, 1.0, 1.0, 1.0);
glDisable (GL_COLOR_MATERIAL);
// unlock the blending VB
m_Renderer->UnlockVB();
}
}
// TODO: Recycle list for faster access ?
m_PatchList.resize(0);
}
};
void Patch::RenderPatch()
{
m_Manager->AddPatch(this);
}
// =======================================================================
QuadtreeNode::QuadtreeNode()
{
for (int i = 0; i < 4; i++)
m_Children[i] = 0;
}
QuadtreeNode::~QuadtreeNode ()
{
for (int i = 0; i < 4; i++)
{
delete m_Children[i];
m_Children[i] = 0;
}
}
void
QuadtreeNode::Build(HeightField* hf,
int minX, int minZ, int size,
QuadtreeRenderManager* manager)
{
const int childSize = size/2;
const bool usePatch = (childSize == Patch::SIZE);
for (int i=0 ; i<4 ; ++i)
{
if (usePatch)
{
m_Children[i] = new Patch();
}
else
{
m_Children[i] = new QuadtreeNode();
}
const int childEast = (i % 2) ? childSize : 0;
const int childSouth = (1 < i) ? childSize : 0;
const int childX = minX + childEast;
const int childZ = minZ + childSouth;
// Virtual call to Build
m_Children[i]->Build(hf, childX, childZ, childSize, manager);
// Make bounding box
m_BBox.AddBBox (m_Children[i]->m_BBox);
}
// std::cerr << "Node BB is " << m_BBox.m_Min << " " << m_BBox.m_Max << std::endl;
}
Patch*
QuadtreeNode::FindPatch(scalar x, scalar z)
{
const Vector3& bbmin = m_BBox.m_Min;
const Vector3& bbmax = m_BBox.m_Max;
if ((x < bbmin.X || x > bbmax.X) ||
(z < bbmin.Z || z > bbmax.Z))
return 0;
// Leaf is a patch
if (!m_Children[0])
{
return static_cast<Patch*>(this);
}
const scalar midX = (bbmin.X + bbmax.X) / 2.0f;
const scalar midZ = (bbmin.Z + bbmax.Z) / 2.0f;
int child = 0;
if (midX < x)
++child;
if (midZ < z)
child += 2;
return m_Children[child]->FindPatch(x, z);
}
void
QuadtreeNode::CollectColliders(ColliderList& list)
{
for (int i=0 ; i<4 ; ++i)
{
m_Children[i]->CollectColliders(list);
}
}
void
QuadtreeNode::InvalidatePatches(const BBox& box)
{
if (!m_BBox.Overlap(box))
return;
for (int i=0 ; i<4 ; ++i)
m_Children[i]->InvalidatePatches(box);
}
bool QuadtreeNode::RayTrace (
const Ray& ray,
std::vector< int >& potentialquads,
EntityList& potentialents)
{
Vector3 c;
if (ray.HitBBox (m_BBox, &c) == false)
return false;
if (m_Children[0])
{
for (int i = 0; i < 4; i++)
{
if (m_Children[i]->RayTrace (ray, potentialquads, potentialents))
return true;
}
return false;
}
else
{
Patch* patch = static_cast<Patch*>(this);
patch->AddPatchEntsToList (potentialents);
patch->RayTrace(ray, potentialquads);
}
return false;
}
void
QuadtreeNode::Render(const Frustum& view, Visibility vis)
{
if (g_UpdateVis)
m_Vis = vis;
if (m_Vis != INSIDE)
{
if (g_UpdateVis)
m_Vis = view.GetVisibility(m_BBox);
if (m_Vis == OUTSIDE )
return;
}
// We assume a patch do not have children
if (!m_Children[0])
{
Patch *patch = static_cast< Patch* >( this );
if (patch->m_Dirty)
patch->Validate();
// Will add itself to its manager
patch->RenderPatch();
}
else
{
for (int i = 0; i < 4; i++)
{
m_Children[i]->Render(view, (Visibility)m_Vis);
}
}
}
/////////////////////////////////////////////////////////////////////
Quadtree::Quadtree (HeightField *heightfield) :
m_Heightfield (heightfield),
m_Rootnode (NULL)
{
m_Rootnode = new QuadtreeNode();
m_RenderManager = new QuadtreeRenderManager(heightfield->m_Grounds);
m_Size = (int) heightfield->m_SizeX;
if (Patch::SIZE <= m_Size)
{
m_Rootnode->Build(heightfield, 0, 0, m_Size, m_RenderManager);
}
else
{
Ark::Sys()->Fatal ("Cannot create height field quadtree.");
}
}
Quadtree::~Quadtree ()
{
// Deletes quadtree and sets to invalid ptr
delete m_Rootnode;
m_Rootnode = 0;
// Render manager too
delete m_RenderManager;
m_RenderManager = 0;
}
/**
* Mark the patches in the specified area as "invalidate", which
* means their topology has changed since the quadtree has been
* created.
*/
void
Quadtree::Invalidate (scalar minx, scalar minz, scalar maxx, scalar maxz)
{
const BBox& quadtreeBox = m_Rootnode->GetBoundingBox();
BBox invalidateBox;
invalidateBox.m_Min = Vector3(minx, quadtreeBox.m_Min.Y, minz);
invalidateBox.m_Max = Vector3(maxx, quadtreeBox.m_Max.Y, maxz);
m_Rootnode->InvalidatePatches(invalidateBox);
}
bool Quadtree::RayTrace (const Ray &ray,
Collision &collision,
bool test_ents)
{
// std::cerr << "RayTrace called" << std::endl;
std::vector< int > potentialquads;
EntityList potentialents;
m_Rootnode->RayTrace (ray, potentialquads, potentialents);
HeightField *hf = m_Heightfield;
ColSystem *cs = hf->GetCache()->GetColSystem();
collision.m_Entity = 0;
collision.m_Flags = 0;
scalar mindist = 1000000.0;
bool foundcol = false;
if (cs != NULL && test_ents)
{
Vector3 p;
for (EntityLI e = potentialents.begin();
e != potentialents.end(); ++e)
{
if (!ray.HitBBox ((*e)->GetBBox(), &p))
continue;
if (cs->RayTrace ((*e)->m_MState, ray, collision))
{
scalar dist = (collision.m_Pos - ray.m_From).GetMagnitude();
if (dist > mindist) continue;
mindist = dist;
foundcol = true;
collision.m_Flags |= Collision::ENTITY;
collision.m_Entity = *e;
}
}
}
if (foundcol) return true;
Vector3 coord;
// One quad is a couples (x,z) in hf indices
const int quadCount = potentialquads.size() / 2;
for (int i=0; i<quadCount; ++i)
{
const int base = 2*i;
const int x = potentialquads[base];
const int z = potentialquads[base+1];
// Gets the corners
Vector3 v[4] = {
hf->GetCoord(x, z),
hf->GetCoord(x+1, z),
hf->GetCoord(x, z+1),
hf->GetCoord(x+1, z+1),
};
int indices[4] = { 0, 1, 2, 3 };
// if x+z is odd, the triangles do not break on the base of the quad
if ((x+z) % 2)
{
indices[0] = 1;
indices[1] = 0;
indices[2] = 3;
indices[3] = 2;
}
if (ray.HitTriangle(v[indices[0]], v[indices[1]], v[indices[2]], &coord))
{
collision.m_Flags = Collision::WORLD
|Collision::PLANE
|Collision::POSITION
|Collision::WORLD;
collision.m_Pos = coord;
collision.m_Plane = Plane::GetTriPlane (v[indices[0]], v[indices[1]], v[indices[2]]);
collision.m_Material = hf->GetGrd (x, z);
// std::cerr << "Intersection at << " << (x) << " and " << (z) << " confirmed" << std::endl;
return true;
}
else if (ray.HitTriangle(v[indices[1]], v[indices[2]], v[indices[3]], &coord))
{
collision.m_Flags = Collision::WORLD
|Collision::PLANE
|Collision::POSITION
|Collision::WORLD;
collision.m_Pos = coord;
collision.m_Plane = Plane::GetTriPlane (v[indices[1]], v[indices[2]], v[indices[3]]);
collision.m_Material = hf->GetGrd (x, z);
// std::cerr << "Intersection at << " << (x) << " and " << (z) << " confirmed" << std::endl;
return true;
}
}
return false;
}
// Remove an entity from the quadtree's patches...
void
Quadtree::RemoveEntity (Entity *ent, HFEntityData *data)
{
std::vector< Patch* >::iterator i;
for (i = data->m_Patches.begin(); i != data->m_Patches.end(); i++)
(*i)->RemoveEntity (ent);
}
// Add/update an entity in the quadtree's patches.
void
Quadtree::UpdateEntity (Entity *ent, HFEntityData *data)
{
RemoveEntity (ent, data);
const BBox &bbox = ent->GetBBox();
/// Add the entity to all the patches it might belong to...
scalar cs[4][2] =
{
{
bbox.m_Min.X,
bbox.m_Min.Z,
},
{
bbox.m_Min.X,
bbox.m_Max.Z,
},
{
bbox.m_Max.X,
bbox.m_Max.Z,
},
{
bbox.m_Max.X,
bbox.m_Min.Z,
},
};
for (int i = 0; i < 4; i++)
{
Patch *p = m_Rootnode->FindPatch(cs[i][0], cs[i][1]);
/// Add the entity to this patch.
if (p)
{
p->AddEntity (ent);
data->m_Patches.push_back (p);
}
}
}
/*
* Make a list of potential colliders.
* Note: we use a map to ensure there no collision is computed
* twice.
*/
void
Quadtree::GetColliders (ColliderList &list)
{
m_Rootnode->CollectColliders(list);
}
/////////////////////////////////////////////////////////////////////
void
Quadtree::Render(Renderer &renderer, const Camera &camera, const Color& fogColor)
{
g_RenderStats.m_NumTris = 0;
g_RenderStats.m_NumFlushes = 0;
m_RenderManager->SetRenderData(renderer, camera, fogColor);
m_Rootnode->Render(renderer.GetFrustum(), SOME_CLIP);
m_RenderManager->DrawPatches();
#if 0
Sys()->Log ("Quadtree rendered : %d triangles, %d flushes\n",
g_RenderStats.m_NumTris,
g_RenderStats.m_NumFlushes);
#endif
}
void
Quadtree::SetMaterials (const MaterialList& materials)
{
m_RenderManager->SetMaterials( materials );
}
} // ns Ark
|