1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
/*
* Copyright (c) 2016-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_CLCONVOLUTIONKERNEL_H
#define ARM_COMPUTE_CLCONVOLUTIONKERNEL_H
#include "arm_compute/core/CL/ICLSimple2DKernel.h"
#include <cstdint>
namespace arm_compute
{
class ICLTensor;
/****************************************************************************************\
* Square Convolution *
\****************************************************************************************/
/** Interface for the kernel to run an arbitrary size convolution on a tensor. (Currently supports 3x3, 5x5, 7x7 and 9x9).
* The client can supply a convolution matrix \f$ C_{m,n} \f$.
* @f{eqnarray}{
* k_0 &=& \frac{m}{2} \\
* l_0 &=& \frac{n}{2} \\
* sum &=& \sum_{k=0,l=0}^{k=m-1,l=n-1} input(x+k-k_0, y+l-l_0) C_{k,l}
* @f}
*
* @note The above equation for this function is similar to the default OpenCV Filter2D function,
* which actually computes a correlation and not a convolution.
* In case of a real convolution the convolution matrix should be flipped both horizontally and vertically.
*/
template <unsigned int matrix_size>
class CLConvolutionKernel : public ICLSimple2DKernel
{
public:
/** Initialise the kernel's input, output and border mode.
*
* @param[in] input Source tensor. Data types supported: U8.
* @param[out] output Destination tensor, Data types supported: U8, S16.
* @param[in] conv Convolution matrix to apply to the input tensor.
* @param[in] scale Scale of the convolution matrix. If 0 is passed, it will be set to the sum of the coefficients of the convolution or 1 if they add up to 0.
* @param[in] border_undefined True if the border mode is undefined. False if it's replicate or constant.
*/
void configure(const ICLTensor *input, ICLTensor *output, const int16_t *conv, uint32_t scale, bool border_undefined);
/** Initialise the kernel's input, output and border mode.
*
* @param[in] compile_context The compile context to be used.
* @param[in] input Source tensor. Data types supported: U8.
* @param[out] output Destination tensor, Data types supported: U8, S16.
* @param[in] conv Convolution matrix to apply to the input tensor.
* @param[in] scale Scale of the convolution matrix. If 0 is passed, it will be set to the sum of the coefficients of the convolution or 1 if they add up to 0.
* @param[in] border_undefined True if the border mode is undefined. False if it's replicate or constant.
*/
void configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *output, const int16_t *conv, uint32_t scale, bool border_undefined);
// Inherited methods overridden:
BorderSize border_size() const override;
};
/** Interface for the kernel which applies a 3x3 convolution to a tensor. */
using CLConvolution3x3Kernel = CLConvolutionKernel<3>;
/** Interface for the kernel which applies a 5x5 convolution to a tensor. */
using CLConvolution5x5Kernel = CLConvolutionKernel<5>;
/** Interface for the kernel which applies a 7x7 convolution to a tensor. */
using CLConvolution7x7Kernel = CLConvolutionKernel<7>;
/** Interface for the kernel which applies a 9x9 convolution to a tensor. */
using CLConvolution9x9Kernel = CLConvolutionKernel<9>;
/****************************************************************************************\
* Separable Square Convolution *
\****************************************************************************************/
/** Kernel for the Horizontal pass of a Separable Convolution. Currently support 5x5, 7x7, 9x9 */
template <unsigned int matrix_size>
class CLSeparableConvolutionHorKernel : public ICLSimple2DKernel
{
public:
/** Default Constructor */
CLSeparableConvolutionHorKernel();
/** Initialise the kernel's input, output and border mode.
*
* @param[in] input Source tensor. Data types supported: U8.
* @param[out] output Destination tensor, Data types supported: S16.
* @param[in] conv Convolution matrix to apply to the input tensor.
* @param[in] border_undefined True if the border mode is undefined. False if it's replicate or constant.
*/
void configure(const ICLTensor *input, ICLTensor *output, const int16_t *conv, bool border_undefined);
/** Initialise the kernel's input, output and border mode.
*
* @param[in] compile_context The compile context to be used.
* @param[in] input Source tensor. Data types supported: U8.
* @param[out] output Destination tensor, Data types supported: U16/S16/S32.
* @param[in] conv Convolution matrix to apply to the input tensor.
* @param[in] border_undefined True if the border mode is undefined. False if it's replicate or constant.
*/
void configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *output, const int16_t *conv, bool border_undefined);
// Inherited methods overridden:
BorderSize border_size() const override;
private:
BorderSize _border_size; /**< Border size */
};
/** Interface for the kernel which applies a horizontal pass of 5x5 convolution to a tensor. */
using CLSeparableConvolution5x5HorKernel = CLSeparableConvolutionHorKernel<5>;
/** Interface for the kernel which applies a horizontal pass of 7x7 convolution to a tensor. */
using CLSeparableConvolution7x7HorKernel = CLSeparableConvolutionHorKernel<7>;
/** Interface for the kernel which applies a horizontal pass of 9x9 convolution to a tensor. */
using CLSeparableConvolution9x9HorKernel = CLSeparableConvolutionHorKernel<9>;
/** Kernel for the Vertical pass of a Separable Convolution. Currently supports 5x5, 7x7, 9x9 */
template <unsigned int matrix_size>
class CLSeparableConvolutionVertKernel : public ICLSimple2DKernel
{
public:
/** Initialise the kernel's input, output and border mode.
*
* @param[in] input Source tensor. Data types supported: U16/S16/S32.
* @param[out] output Destination tensor, Data types supported: U8, S16.
* @param[in] conv Convolution matrix to apply to the input tensor.
* @param[in] scale Scale of the convolution matrix.
* @param[in] border_undefined True if the border mode is undefined. False if it's replicate or constant.
* @param[in] data_type Data type to use for intermeidate result. @sa data_type_for_convolution
*/
void configure(const ICLTensor *input, ICLTensor *output, const int16_t *conv, uint32_t scale, bool border_undefined, DataType data_type = DataType::S32);
/** Initialise the kernel's input, output and border mode.
*
* @param[in] compile_context The compile context to be used.
* @param[in] input Source tensor. Data types supported: U16/S16/S32.
* @param[out] output Destination tensor, Data types supported: U8, S16.
* @param[in] conv Convolution matrix to apply to the input tensor.
* @param[in] scale Scale of the convolution matrix.
* @param[in] border_undefined True if the border mode is undefined. False if it's replicate or constant.
* @param[in] data_type Data type to use for intermeidate result. @sa data_type_for_convolution
*/
void configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *output, const int16_t *conv, uint32_t scale, bool border_undefined, DataType data_type = DataType::S32);
// Inherited methods overridden:
BorderSize border_size() const override;
};
/** Interface for the kernel which applies a vertical pass of 5x5 convolution to a tensor. */
using CLSeparableConvolution5x5VertKernel = CLSeparableConvolutionVertKernel<5>;
/** Interface for the kernel which applies a vertical pass of 7x7 convolution to a tensor. */
using CLSeparableConvolution7x7VertKernel = CLSeparableConvolutionVertKernel<7>;
/** Interface for the kernel which applies a vertical pass of 9x9 convolution to a tensor. */
using CLSeparableConvolution9x9VertKernel = CLSeparableConvolutionVertKernel<9>;
/****************************************************************************************\
* Rectangle Convolution *
\****************************************************************************************/
/** Kernel for the running convolution on a rectangle matrix.
*
* @note Supports combinations of 3,5,7 and 9.
*/
class CLConvolutionRectangleKernel : public ICLKernel
{
public:
/** Default constructor */
CLConvolutionRectangleKernel();
/** Prevent instances of this class from being copied (As this class contains pointers) */
CLConvolutionRectangleKernel(const CLConvolutionRectangleKernel &) = delete;
/** Prevent instances of this class from being copied (As this class contains pointers) */
CLConvolutionRectangleKernel &operator=(const CLConvolutionRectangleKernel &) = delete;
/** Allow instances of this class to be moved */
CLConvolutionRectangleKernel(CLConvolutionRectangleKernel &&) = default;
/** Allow instances of this class to be moved */
CLConvolutionRectangleKernel &operator=(CLConvolutionRectangleKernel &&) = default;
/** Initialise the kernel's input, output and border mode.
*
* @param[in] input Source tensor. Data types supported: U8.
* @param[out] output Destination tensor, Data types supported: U8, S16.
* @param[in] conv Convolution matrix to apply to the input tensor.
* @param[in] width Width of convolution matrix (Number of columns)
* @param[in] height Height of convolution matrix (Number of rows)
* @param[in] scale Scale of the convolution matrix. If 0 is passed, it will be set to the sum of the coefficients of the convolution or 1 if they add up to 0.
* @param[in] border_undefined True if the border mode is undefined. False if it's replicate or constant.
*/
void configure(const ICLTensor *input, ICLTensor *output, const int16_t *conv, uint32_t width, uint32_t height, uint32_t scale, bool border_undefined);
/** Initialise the kernel's input, output and border mode.
*
* @param[in] compile_context The compile context to be used.
* @param[in] input Source tensor. Data types supported: U8.
* @param[out] output Destination tensor, Data types supported: U8, S16.
* @param[in] conv Convolution matrix to apply to the input tensor.
* @param[in] width Width of convolution matrix (Number of columns)
* @param[in] height Height of convolution matrix (Number of rows)
* @param[in] scale Scale of the convolution matrix. If 0 is passed, it will be set to the sum of the coefficients of the convolution or 1 if they add up to 0.
* @param[in] border_undefined True if the border mode is undefined. False if it's replicate or constant.
*/
void configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *output, const int16_t *conv, uint32_t width, uint32_t height, uint32_t scale, bool border_undefined);
// Inherited methods overridden:
void run(const Window &window, cl::CommandQueue &queue) override;
BorderSize border_size() const override;
private:
BorderSize _border_size;
const ICLTensor *_input;
ICLTensor *_output;
};
} // namespace arm_compute
#endif /*ARM_COMPUTE_CLCONVOLUTIONKERNEL_H */
|