| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 
 | /*
 * Copyright (c) 2017-2020 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef ARM_COMPUTE_CLWEIGHTSRESHAPEKERNEL_H
#define ARM_COMPUTE_CLWEIGHTSRESHAPEKERNEL_H
#include "arm_compute/core/CL/ICLKernel.h"
namespace arm_compute
{
/** OpenCL kernel to perform reshaping on the weights used by convolution and locally connected layer
 *
 * Rearranges each 3-dimensional kernel to a single row leading to a matrix with linearized kernels.
 * In combination with the @ref CLIm2ColKernel can transform a convolution to a matrix multiplication.
 *
 * For example assuming a 3D weight kernel of 3x3 dimensions and depth of 2 we have:
 * @f[
 * \left( \begin{array}{ccc}
 * a000 & a001 & a002 \\
 * a010 & a011 & a012 \\
 * a020 & a021 & a022 \\
 * \end{array} \right)
 * \left( \begin{array}{ccc}
 * a100 & a101 & a102 \\
 * a110 & a111 & a112 \\
 * a120 & a121 & a122 \\
 * \end{array} \right)
 * \rightarrow
 * \left( \begin{array}{ccccccccc}
 * a000 & a001 & a002 & a010 & a011 & a012 & a020 & a021 & a022 & a100 & a101 & a102 & a110 & a111 & a112 & a120 & a121 & a122 \\
 * \end{array} \right)
 * @f]
 */
class CLWeightsReshapeKernel : public ICLKernel
{
public:
    /** Constructor.*/
    CLWeightsReshapeKernel();
    /** Prevent instances of this class from being copied (As this class contains pointers) */
    CLWeightsReshapeKernel(const CLWeightsReshapeKernel &) = delete;
    /** Prevent instances of this class from being copied (As this class contains pointers) */
    CLWeightsReshapeKernel &operator=(const CLWeightsReshapeKernel &) = delete;
    /** Allow instances of this class to be moved */
    CLWeightsReshapeKernel(CLWeightsReshapeKernel &&) = default;
    /** Allow instances of this class to be moved */
    CLWeightsReshapeKernel &operator=(CLWeightsReshapeKernel &&) = default;
    /** Default destructor */
    ~CLWeightsReshapeKernel() = default;
    /** Set the input and output of the kernel.
     *
     * @param[in]  input      The input tensor to convert. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM] if shared,
     *                        and 5D tensor with dimensions [kernel_x, kernel_y, IFM, OFM,  num_patches] if unshared. Data types supported: All
     * @param[in]  biases     The shared biases tensor to append.  Bias is 1D tensor with dimensions [OFM] if shared and 2D tensor with
     *                        dimensions [OFM, num_patches] if unshared. Data types supported: F16/F32, for quantized types this must be nullptr.
     *                        @warning Appending biases to weights reshaped matrix is not supported for quantized asymmetric types.
     * @param[out] output     The output tensor. Should be a 2D Tensor if there are no groups and the weights are not shared; a 3D Tensor otherwise.
     *                        Data types supported: Same as @p input
     * @param[in]  num_groups (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is only supported for NCHW data layout
     *                        Number of groups greater than one are only supported for NCHW data layout, and the number of weights must be a multiple of it.
     */
    void configure(const ICLTensor *input, const ICLTensor *biases, ICLTensor *output, unsigned int num_groups = 1);
    /** Set the input and output of the kernel.
     *
     * @param[in]  compile_context The compile context to be used.
     * @param[in]  input           The input tensor to convert. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM] if shared,
     *                             and 5D tensor with dimensions [kernel_x, kernel_y, IFM, OFM,  num_patches] if unshared. Data types supported: All
     * @param[in]  biases          The shared biases tensor to append.  Bias is 1D tensor with dimensions [OFM] if shared and 2D tensor with
     *                             dimensions [OFM, num_patches] if unshared. Data types supported: F16/F32, for quantized types this must be nullptr.
     *                             @warning Appending biases to weights reshaped matrix is not supported for quantized asymmetric types.
     * @param[out] output          The output tensor. Should be a 2D Tensor if there are no groups and the weights are not shared; a 3D Tensor otherwise.
     *                             Data types supported: Same as @p input
     * @param[in]  num_groups      (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is only supported for NCHW data layout
     *                             Number of groups greater than one are only supported for NCHW data layout, and the number of weights must be a multiple of it.
     */
    void configure(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *biases, ICLTensor *output, unsigned int num_groups = 1);
    /** Static function to check if given info will lead to a valid configuration of @ref CLWeightsReshapeKernel
     *
     * @param[in] input      The input tensor to convert. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM] if shared,
     *                       and 5D tensor with dimensions [kernel_x, kernel_y, IFM, OFM,  num_patches] if unshared. Data types supported: All
     * @param[in] biases     The shared biases tensor to append.  Bias is 1D tensor with dimensions [OFM] if shared and 2D tensor with
     *                       dimensions [OFM, num_patches] if unshared. Data types supported: F16/F32, for quantized types this must be nullptr.
     *                       @warning Appending biases to weights reshaped matrix is not supported for quantized asymmetric types.
     * @param[in] output     The output tensor. Should be a 2D Tensor if there are no groups and the weights are not shared; a 3D Tensor otherwise.
     *                       Data types supported: Same as @p input
     * @param[in] num_groups (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is only supported for NCHW data layout
     *                       Number of groups greater than one are only supported for NCHW data layout, and the number of weights must be a multiple of it.
     *
     * @return a status
     */
    static Status validate(const ITensorInfo *input, const ITensorInfo *biases, const ITensorInfo *output, unsigned int num_groups = 1);
    // Inherited methods overridden:
    void run(const Window &window, cl::CommandQueue &queue) override;
private:
    const ICLTensor *_input;
    const ICLTensor *_biases;
    ICLTensor       *_output;
};
} // namespace arm_compute
#endif /*ARM_COMPUTE_CLWEIGHTSRESHAPEKERNEL_H */
 |