1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
/*
* Copyright (c) 2016-2019 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_TENSORINFO_H
#define ARM_COMPUTE_TENSORINFO_H
#include "arm_compute/core/ITensorInfo.h"
#include "ITensorInfo.h"
#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Strides.h"
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include <cstddef>
#include <memory>
namespace arm_compute
{
class HOGInfo;
/** Store the tensor's metadata */
class TensorInfo final : public ITensorInfo
{
public:
/** Default constructor */
TensorInfo();
/** Default destructor */
~TensorInfo() = default;
/** Allow instances of this class to be copy constructed */
TensorInfo(const ITensorInfo &info);
/** Allow instances of this class to be copy constructed */
TensorInfo(const TensorInfo &) = default;
/** Allow instances of this class to be copied */
TensorInfo &operator=(const TensorInfo &) = default;
/** Allow instances of this class to be move constructed */
TensorInfo(TensorInfo &&) = default;
/** Allow instances of this class to be moved */
TensorInfo &operator=(TensorInfo &&) = default;
/** Construct a tensor info with a format.
*
* Can be used for automatic derivation of the shape by the function.
*
* @param[in] format Format of the tensor.
*/
TensorInfo(Format format);
/** 2D tensor constructor
*
* @param[in] width Width of the 2D tensor
* @param[in] height Height of the 2D tensor
* @param[in] format Single plane format of the tensor.
*/
TensorInfo(unsigned int width, unsigned int height, Format format);
/** Constructor
*
* @param[in] tensor_shape It specifies the size for each dimension of the tensor in number of elements.
* @param[in] format Single plane format of the tensor.
*/
TensorInfo(const TensorShape &tensor_shape, Format format);
/** Construct a tensor info with a data type and number of channels.
*
* Can be used for automatic derivation of the shape by the function.
*
* @param[in] num_channels It indicates the number of channels for each tensor element
* @param[in] data_type Data type to use for each tensor element
*/
TensorInfo(size_t num_channels, DataType data_type);
/** Constructor
*
* @param[in] tensor_shape It specifies the size for each dimension of the tensor in number of elements.
* @param[in] num_channels It indicates the number of channels for each tensor element
* @param[in] data_type Data type to use for each tensor element
*/
TensorInfo(const TensorShape &tensor_shape, size_t num_channels, DataType data_type);
/** Constructor
*
* @param[in] tensor_shape It specifies the size for each dimension of the tensor in number of elements.
* @param[in] num_channels It indicates the number of channels for each tensor element
* @param[in] data_type Data type to use for each tensor element
* @param[in] data_layout The data layout setting for the tensor data.
*/
TensorInfo(const TensorShape &tensor_shape, size_t num_channels, DataType data_type, DataLayout data_layout);
/** Constructor
*
* @param[in] tensor_shape It specifies the size for each dimension of the tensor in number of elements.
* @param[in] num_channels It indicates the number of channels for each tensor element
* @param[in] data_type Data type to use for each tensor element
* @param[in] quantization_info The quantization settings for the tensor data.
*/
TensorInfo(const TensorShape &tensor_shape, size_t num_channels, DataType data_type, QuantizationInfo quantization_info);
/** Constructor
*
* @param[in] hog_info HOG's metadata used to allocate normalized HOG space
* @param[in] width Width of the 2D tensor where the HOG descriptor will be computed on
* @param[in] height Height of the 2D tensor where the HOG descriptor will be computed on
*/
TensorInfo(const HOGInfo &hog_info, unsigned int width, unsigned int height);
/** Initialize the tensor info with just a format.
*
* Can be used for automatic derivation of the shape by the function.
*
* @param[in] format Single plane format of the tensor.
*/
void init(Format format);
/** Initialize the metadata structure with the given parameters
*
* @param[in] tensor_shape Size for each dimension of the tensor in number of elements.
* @param[in] format Single plane format of the tensor.
*/
void init(const TensorShape &tensor_shape, Format format);
/** Initialize the metadata structure with the given parameters
*
* @param[in] tensor_shape Size for each dimension of the tensor in number of elements.
* @param[in] format Single plane format of the tensor.
* @param[in] strides_in_bytes Stride in bytes for accessing each dimension of the tensor.
* @param[in] offset_first_element_in_bytes Offset in bytes from the beginning of memory allocation to access the first element.
* @param[in] total_size_in_bytes Size in bytes of the memory allocation (including the offset to the first element).
*/
void init(const TensorShape &tensor_shape, Format format, const Strides &strides_in_bytes, size_t offset_first_element_in_bytes, size_t total_size_in_bytes);
/** Initialize the tensor info with just a format.
*
* Can be used for automatic derivation of the shape by the function.
*
* @param[in] num_channels Desired number of channels for each tensor element.
* @param[in] data_type Data type to use for each tensor element.
*/
void init(size_t num_channels, DataType data_type);
/** Initialize the metadata structure with the given parameters
*
* @param[in] tensor_shape Size for each dimension of the tensor in number of elements.
* @param[in] num_channels Desired number of channels for each tensor element.
* @param[in] data_type Data type to use for each tensor element.
*/
void init(const TensorShape &tensor_shape, size_t num_channels, DataType data_type);
/** Initialize the metadata structure with the given parameters
*
* @param[in] tensor_shape Size for each dimension of the tensor in number of elements.
* @param[in] num_channels Desired number of channels for each tensor element.
* @param[in] data_type Data type to use for each tensor element.
* @param[in] strides_in_bytes Stride in bytes for accessing each dimension of the tensor.
* @param[in] offset_first_element_in_bytes Offset in bytes from the beginning of memory allocation to access the first element.
* @param[in] total_size_in_bytes Size in bytes of the memory allocation (including the offset to the first element).
*/
void init(const TensorShape &tensor_shape, size_t num_channels, DataType data_type, const Strides &strides_in_bytes, size_t offset_first_element_in_bytes,
size_t total_size_in_bytes);
/** Initialize the metadata structure for the given HOG's metadata
*
* @param[in] hog_info HOG's metadata used to allocate normalized HOG space
* @param[in] width Width of the 2D tensor where the HOG descriptor will be computed on
* @param[in] height Height of the 2D tensor where the HOG descriptor will be computed on
*/
void init(const HOGInfo &hog_info, unsigned int width, unsigned int height);
/** Initialize the metadata structure for the given tensor shape and single-plane format, (Padding is automatically calculated)
*
* @note The padding used by this method is really conservative so that the tensor can be used for most functions.
*
* @param[in] tensor_shape It specifies the size for each dimension of the tensor in number of elements
* @param[in] format Single plane format of the image.
*
* @return Total allocation size including padding in bytes.
*/
size_t init_auto_padding(const TensorShape &tensor_shape, Format format);
/** Initialize the metadata structure for the given tensor shape, number of channels and
* data type. (Padding is automatically calculated)
*
* @note The padding used by this method is really conservative so that the tensor can be used for most functions.
*
* @param[in] tensor_shape It specifies the size for each dimension of the tensor in number of elements
* @param[in] num_channels It indicates the number of channels for each tensor element
* @param[in] data_type Data type to use for each tensor element
*
* @return Total allocation size including padding in bytes.
*/
size_t init_auto_padding(const TensorShape &tensor_shape, size_t num_channels, DataType data_type);
/** Initialize the metadata structure for the given HOG's metadata
*
* @note init_auto_padding will be used for the tensor initialization.
*
* @param[in] hog_info HOG's metadata used to allocate normalized HOG space
* @param[in] width Width of the 2D tensor where the HOG descriptor will be computed on
* @param[in] height Height of the 2D tensor where the HOG descriptor will be computed on
*
* @return Total allocation size including padding in bytes.
*/
size_t init_auto_padding(const HOGInfo &hog_info, unsigned int width, unsigned int height);
// Inherited methods overridden:
std::unique_ptr<ITensorInfo> clone() const override;
ITensorInfo &set_data_type(DataType data_type) override;
ITensorInfo &set_num_channels(int num_channels) override;
ITensorInfo &set_format(Format format) override;
ITensorInfo &set_tensor_shape(const TensorShape &shape) override;
ITensorInfo &set_quantization_info(const QuantizationInfo &quantization_info) override;
ITensorInfo &set_data_layout(const DataLayout &data_layout) override;
ITensorInfo &reset_padding() override;
bool auto_padding() override;
bool extend_padding(const PaddingSize &padding) override;
size_t dimension(size_t index) const override
{
return _tensor_shape[index];
}
size_t dimension(DataLayoutDimension dimension) const override
{
return get_data_layout_dimension_index(_data_layout, dimension);
}
const Strides &strides_in_bytes() const override
{
return _strides_in_bytes;
}
size_t offset_first_element_in_bytes() const override
{
return _offset_first_element_in_bytes;
}
int32_t offset_element_in_bytes(const Coordinates &pos) const override;
size_t element_size() const override
{
return data_size_from_type(_data_type) * _num_channels;
}
size_t num_dimensions() const override
{
return _tensor_shape.num_dimensions();
}
size_t num_channels() const override
{
return _num_channels;
}
const TensorShape &tensor_shape() const override
{
return _tensor_shape;
}
DataType data_type() const override
{
return _data_type;
}
Format format() const override
{
return _format;
}
size_t total_size() const override
{
return _total_size;
}
PaddingSize padding() const override
{
return _padding;
}
bool has_padding() const override
{
return !_padding.empty();
}
bool is_resizable() const override
{
return _is_resizable;
}
bool is_dynamic() const override
{
return _is_dynamic;
}
ITensorInfo &set_is_resizable(bool is_resizable) override
{
_is_resizable = is_resizable;
return *this;
}
ITensorInfo &set_is_dynamic(bool is_dynamic) override
{
_is_dynamic = is_dynamic;
return *this;
}
ValidRegion valid_region() const override
{
return _valid_region;
}
void set_valid_region(const ValidRegion &valid_region) override
{
_valid_region = valid_region;
}
QuantizationInfo quantization_info() const override
{
return _quantization_info;
}
DataLayout data_layout() const override
{
return _data_layout;
}
private:
/** Calculates strides, offset and total size resulting from the specified padding around the XY plane.
*
* @param[in] padding Padding around the XY plane in elements.
*/
std::tuple<Strides, size_t, size_t> calculate_padding_requirements(const PaddingSize &padding);
size_t _total_size;
size_t _offset_first_element_in_bytes;
Strides _strides_in_bytes;
size_t _num_channels;
TensorShape _tensor_shape;
DataType _data_type;
Format _format;
bool _is_resizable;
bool _is_dynamic;
ValidRegion _valid_region;
PaddingSize _padding;
QuantizationInfo _quantization_info;
DataLayout _data_layout;
};
} // namespace arm_compute
#endif /*ARM_COMPUTE_TENSORINFO_H */
|