1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
|
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_TEST_UTILS_H
#define ARM_COMPUTE_TEST_UTILS_H
#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/HOGInfo.h"
#include "arm_compute/core/PyramidInfo.h"
#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "support/StringSupport.h"
#include "support/ToolchainSupport.h"
#ifdef ARM_COMPUTE_CL
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#endif /* ARM_COMPUTE_CL */
#ifdef ARM_COMPUTE_GC
#include "arm_compute/core/GLES_COMPUTE/OpenGLES.h"
#include "arm_compute/runtime/GLES_COMPUTE/GCTensor.h"
#endif /* ARM_COMPUTE_GC */
#include <cmath>
#include <cstddef>
#include <limits>
#include <memory>
#include <random>
#include <sstream>
#include <string>
#include <type_traits>
#include <vector>
#include "arm_compute/runtime/CPP/CPPScheduler.h"
#include "arm_compute/runtime/RuntimeContext.h"
namespace arm_compute
{
#ifdef ARM_COMPUTE_CL
class CLTensor;
#endif /* ARM_COMPUTE_CL */
namespace test
{
/** Round floating-point value with half value rounding to positive infinity.
*
* @param[in] value floating-point value to be rounded.
*
* @return Floating-point value of rounded @p value.
*/
template <typename T, typename = typename std::enable_if<std::is_floating_point<T>::value>::type>
inline T round_half_up(T value)
{
return std::floor(value + 0.5f);
}
/** Round floating-point value with half value rounding to nearest even.
*
* @param[in] value floating-point value to be rounded.
* @param[in] epsilon precision.
*
* @return Floating-point value of rounded @p value.
*/
template <typename T, typename = typename std::enable_if<std::is_floating_point<T>::value>::type>
inline T round_half_even(T value, T epsilon = std::numeric_limits<T>::epsilon())
{
T positive_value = std::abs(value);
T ipart = 0;
std::modf(positive_value, &ipart);
// If 'value' is exactly halfway between two integers
if(std::abs(positive_value - (ipart + 0.5f)) < epsilon)
{
// If 'ipart' is even then return 'ipart'
if(std::fmod(ipart, 2.f) < epsilon)
{
return support::cpp11::copysign(ipart, value);
}
// Else return the nearest even integer
return support::cpp11::copysign(std::ceil(ipart + 0.5f), value);
}
// Otherwise use the usual round to closest
return support::cpp11::copysign(support::cpp11::round(positive_value), value);
}
namespace traits
{
// *INDENT-OFF*
// clang-format off
/** Promote a type */
template <typename T> struct promote { };
/** Promote uint8_t to uint16_t */
template <> struct promote<uint8_t> { using type = uint16_t; /**< Promoted type */ };
/** Promote int8_t to int16_t */
template <> struct promote<int8_t> { using type = int16_t; /**< Promoted type */ };
/** Promote uint16_t to uint32_t */
template <> struct promote<uint16_t> { using type = uint32_t; /**< Promoted type */ };
/** Promote int16_t to int32_t */
template <> struct promote<int16_t> { using type = int32_t; /**< Promoted type */ };
/** Promote uint32_t to uint64_t */
template <> struct promote<uint32_t> { using type = uint64_t; /**< Promoted type */ };
/** Promote int32_t to int64_t */
template <> struct promote<int32_t> { using type = int64_t; /**< Promoted type */ };
/** Promote float to float */
template <> struct promote<float> { using type = float; /**< Promoted type */ };
/** Promote half to half */
template <> struct promote<half> { using type = half; /**< Promoted type */ };
/** Get promoted type */
template <typename T>
using promote_t = typename promote<T>::type;
template <typename T>
using make_signed_conditional_t = typename std::conditional<std::is_integral<T>::value, std::make_signed<T>, std::common_type<T>>::type;
template <typename T>
using make_unsigned_conditional_t = typename std::conditional<std::is_integral<T>::value, std::make_unsigned<T>, std::common_type<T>>::type;
// clang-format on
// *INDENT-ON*
}
/** Look up the format corresponding to a channel.
*
* @param[in] channel Channel type.
*
* @return Format that contains the given channel.
*/
inline Format get_format_for_channel(Channel channel)
{
switch(channel)
{
case Channel::R:
case Channel::G:
case Channel::B:
return Format::RGB888;
default:
throw std::runtime_error("Unsupported channel");
}
}
/** Return the format of a channel.
*
* @param[in] channel Channel type.
*
* @return Format of the given channel.
*/
inline Format get_channel_format(Channel channel)
{
switch(channel)
{
case Channel::R:
case Channel::G:
case Channel::B:
return Format::U8;
default:
throw std::runtime_error("Unsupported channel");
}
}
/** Base case of foldl.
*
* @return value.
*/
template <typename F, typename T>
inline T foldl(F &&, const T &value)
{
return value;
}
/** Base case of foldl.
*
* @return func(value1, value2).
*/
template <typename F, typename T, typename U>
inline auto foldl(F &&func, T &&value1, U &&value2) -> decltype(func(value1, value2))
{
return func(value1, value2);
}
/** Fold left.
*
* @param[in] func Binary function to be called.
* @param[in] initial Initial value.
* @param[in] value Argument passed to the function.
* @param[in] values Remaining arguments.
*/
template <typename F, typename I, typename T, typename... Vs>
inline I foldl(F &&func, I &&initial, T &&value, Vs &&... values)
{
return foldl(std::forward<F>(func), func(std::forward<I>(initial), std::forward<T>(value)), std::forward<Vs>(values)...);
}
/** Create a valid region based on tensor shape, border mode and border size
*
* @param[in] a_shape Shape used as size of the valid region.
* @param[in] border_undefined (Optional) Boolean indicating if the border mode is undefined.
* @param[in] border_size (Optional) Border size used to specify the region to exclude.
*
* @return A valid region starting at (0, 0, ...) with size of @p shape if @p border_undefined is false; otherwise
* return A valid region starting at (@p border_size.left, @p border_size.top, ...) with reduced size of @p shape.
*/
inline ValidRegion shape_to_valid_region(const TensorShape &a_shape, bool border_undefined = false, BorderSize border_size = BorderSize(0))
{
ValidRegion valid_region{ Coordinates(), a_shape };
Coordinates &anchor = valid_region.anchor;
TensorShape &shape = valid_region.shape;
if(border_undefined)
{
ARM_COMPUTE_ERROR_ON(shape.num_dimensions() < 2);
anchor.set(0, border_size.left);
anchor.set(1, border_size.top);
const int valid_shape_x = std::max(0, static_cast<int>(shape.x()) - static_cast<int>(border_size.left) - static_cast<int>(border_size.right));
const int valid_shape_y = std::max(0, static_cast<int>(shape.y()) - static_cast<int>(border_size.top) - static_cast<int>(border_size.bottom));
shape.set(0, valid_shape_x);
shape.set(1, valid_shape_y);
}
return valid_region;
}
/** Create a valid region for Gaussian Pyramid Half based on tensor shape and valid region at level "i - 1" and border mode
*
* @note The border size is 2 in case of Gaussian Pyramid Half
*
* @param[in] a_shape Shape used at level "i - 1" of Gaussian Pyramid Half
* @param[in] a_valid_region Valid region used at level "i - 1" of Gaussian Pyramid Half
* @param[in] border_undefined (Optional) Boolean indicating if the border mode is undefined.
*
* return The valid region for the level "i" of Gaussian Pyramid Half
*/
inline ValidRegion shape_to_valid_region_gaussian_pyramid_half(const TensorShape &a_shape, const ValidRegion &a_valid_region, bool border_undefined = false)
{
constexpr int border_size = 2;
ValidRegion valid_region{ Coordinates(), a_shape };
Coordinates &anchor = valid_region.anchor;
TensorShape &shape = valid_region.shape;
// Compute tensor shape for level "i" of Gaussian Pyramid Half
// dst_width = (src_width + 1) * 0.5f
// dst_height = (src_height + 1) * 0.5f
shape.set(0, (a_shape[0] + 1) * 0.5f);
shape.set(1, (a_shape[1] + 1) * 0.5f);
if(border_undefined)
{
ARM_COMPUTE_ERROR_ON(shape.num_dimensions() < 2);
// Compute the left and top invalid borders
float invalid_border_left = static_cast<float>(a_valid_region.anchor.x() + border_size) / 2.0f;
float invalid_border_top = static_cast<float>(a_valid_region.anchor.y() + border_size) / 2.0f;
// For the new anchor point we can have 2 cases:
// 1) If the width/height of the tensor shape is odd, we have to take the ceil value of (a_valid_region.anchor.x() + border_size) / 2.0f or (a_valid_region.anchor.y() + border_size / 2.0f
// 2) If the width/height of the tensor shape is even, we have to take the floor value of (a_valid_region.anchor.x() + border_size) / 2.0f or (a_valid_region.anchor.y() + border_size) / 2.0f
// In this manner we should be able to propagate correctly the valid region along all levels of the pyramid
invalid_border_left = (a_shape[0] % 2) ? std::ceil(invalid_border_left) : std::floor(invalid_border_left);
invalid_border_top = (a_shape[1] % 2) ? std::ceil(invalid_border_top) : std::floor(invalid_border_top);
// Set the anchor point
anchor.set(0, static_cast<int>(invalid_border_left));
anchor.set(1, static_cast<int>(invalid_border_top));
// Compute shape
// Calculate the right and bottom invalid borders at the previous level of the pyramid
const float prev_invalid_border_right = static_cast<float>(a_shape[0] - (a_valid_region.anchor.x() + a_valid_region.shape[0]));
const float prev_invalid_border_bottom = static_cast<float>(a_shape[1] - (a_valid_region.anchor.y() + a_valid_region.shape[1]));
// Calculate the right and bottom invalid borders at the current level of the pyramid
const float invalid_border_right = std::ceil((prev_invalid_border_right + static_cast<float>(border_size)) / 2.0f);
const float invalid_border_bottom = std::ceil((prev_invalid_border_bottom + static_cast<float>(border_size)) / 2.0f);
const int valid_shape_x = std::max(0, static_cast<int>(shape.x()) - static_cast<int>(invalid_border_left) - static_cast<int>(invalid_border_right));
const int valid_shape_y = std::max(0, static_cast<int>(shape.y()) - static_cast<int>(invalid_border_top) - static_cast<int>(invalid_border_bottom));
shape.set(0, valid_shape_x);
shape.set(1, valid_shape_y);
}
return valid_region;
}
/** Create a valid region for Laplacian Pyramid based on tensor shape and valid region at level "i - 1" and border mode
*
* @note The border size is 2 in case of Laplacian Pyramid
*
* @param[in] a_shape Shape used at level "i - 1" of Laplacian Pyramid
* @param[in] a_valid_region Valid region used at level "i - 1" of Laplacian Pyramid
* @param[in] border_undefined (Optional) Boolean indicating if the border mode is undefined.
*
* return The valid region for the level "i" of Laplacian Pyramid
*/
inline ValidRegion shape_to_valid_region_laplacian_pyramid(const TensorShape &a_shape, const ValidRegion &a_valid_region, bool border_undefined = false)
{
ValidRegion valid_region = shape_to_valid_region_gaussian_pyramid_half(a_shape, a_valid_region, border_undefined);
if(border_undefined)
{
const BorderSize gaussian5x5_border(2);
auto border_left = static_cast<int>(gaussian5x5_border.left);
auto border_right = static_cast<int>(gaussian5x5_border.right);
auto border_top = static_cast<int>(gaussian5x5_border.top);
auto border_bottom = static_cast<int>(gaussian5x5_border.bottom);
valid_region.anchor.set(0, valid_region.anchor[0] + border_left);
valid_region.anchor.set(1, valid_region.anchor[1] + border_top);
valid_region.shape.set(0, std::max(0, static_cast<int>(valid_region.shape[0]) - border_right - border_left));
valid_region.shape.set(1, std::max(0, static_cast<int>(valid_region.shape[1]) - border_top - border_bottom));
}
return valid_region;
}
/** Write the value after casting the pointer according to @p data_type.
*
* @warning The type of the value must match the specified data type.
*
* @param[out] ptr Pointer to memory where the @p value will be written.
* @param[in] value Value that will be written.
* @param[in] data_type Data type that will be written.
*/
template <typename T>
void store_value_with_data_type(void *ptr, T value, DataType data_type)
{
switch(data_type)
{
case DataType::U8:
case DataType::QASYMM8:
*reinterpret_cast<uint8_t *>(ptr) = value;
break;
case DataType::S8:
case DataType::QASYMM8_SIGNED:
case DataType::QSYMM8:
case DataType::QSYMM8_PER_CHANNEL:
*reinterpret_cast<int8_t *>(ptr) = value;
break;
case DataType::U16:
case DataType::QASYMM16:
*reinterpret_cast<uint16_t *>(ptr) = value;
break;
case DataType::S16:
case DataType::QSYMM16:
*reinterpret_cast<int16_t *>(ptr) = value;
break;
case DataType::U32:
*reinterpret_cast<uint32_t *>(ptr) = value;
break;
case DataType::S32:
*reinterpret_cast<int32_t *>(ptr) = value;
break;
case DataType::U64:
*reinterpret_cast<uint64_t *>(ptr) = value;
break;
case DataType::S64:
*reinterpret_cast<int64_t *>(ptr) = value;
break;
case DataType::BFLOAT16:
*reinterpret_cast<bfloat16 *>(ptr) = bfloat16(value);
break;
case DataType::F16:
*reinterpret_cast<half *>(ptr) = value;
break;
case DataType::F32:
*reinterpret_cast<float *>(ptr) = value;
break;
case DataType::F64:
*reinterpret_cast<double *>(ptr) = value;
break;
case DataType::SIZET:
*reinterpret_cast<size_t *>(ptr) = value;
break;
default:
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
}
}
/** Saturate a value of type T against the numeric limits of type U.
*
* @param[in] val Value to be saturated.
*
* @return saturated value.
*/
template <typename U, typename T>
T saturate_cast(T val)
{
if(val > static_cast<T>(std::numeric_limits<U>::max()))
{
val = static_cast<T>(std::numeric_limits<U>::max());
}
if(val < static_cast<T>(std::numeric_limits<U>::lowest()))
{
val = static_cast<T>(std::numeric_limits<U>::lowest());
}
return val;
}
/** Find the signed promoted common type.
*/
template <typename... T>
struct common_promoted_signed_type
{
/** Common type */
using common_type = typename std::common_type<T...>::type;
/** Promoted type */
using promoted_type = traits::promote_t<common_type>;
/** Intermediate type */
using intermediate_type = typename traits::make_signed_conditional_t<promoted_type>::type;
};
/** Find the unsigned promoted common type.
*/
template <typename... T>
struct common_promoted_unsigned_type
{
/** Common type */
using common_type = typename std::common_type<T...>::type;
/** Promoted type */
using promoted_type = traits::promote_t<common_type>;
/** Intermediate type */
using intermediate_type = typename traits::make_unsigned_conditional_t<promoted_type>::type;
};
/** Convert a linear index into n-dimensional coordinates.
*
* @param[in] shape Shape of the n-dimensional tensor.
* @param[in] index Linear index specifying the i-th element.
*
* @return n-dimensional coordinates.
*/
inline Coordinates index2coord(const TensorShape &shape, int index)
{
int num_elements = shape.total_size();
ARM_COMPUTE_ERROR_ON_MSG(index < 0 || index >= num_elements, "Index has to be in [0, num_elements]");
ARM_COMPUTE_ERROR_ON_MSG(num_elements == 0, "Cannot create coordinate from empty shape");
Coordinates coord{ 0 };
for(int d = shape.num_dimensions() - 1; d >= 0; --d)
{
num_elements /= shape[d];
coord.set(d, index / num_elements);
index %= num_elements;
}
return coord;
}
/** Linearise the given coordinate.
*
* Transforms the given coordinate into a linear offset in terms of
* elements.
*
* @param[in] shape Shape of the n-dimensional tensor.
* @param[in] coord The to be converted coordinate.
*
* @return Linear offset to the element.
*/
inline int coord2index(const TensorShape &shape, const Coordinates &coord)
{
ARM_COMPUTE_ERROR_ON_MSG(shape.total_size() == 0, "Cannot get index from empty shape");
ARM_COMPUTE_ERROR_ON_MSG(coord.num_dimensions() == 0, "Cannot get index of empty coordinate");
int index = 0;
int dim_size = 1;
for(unsigned int i = 0; i < coord.num_dimensions(); ++i)
{
index += coord[i] * dim_size;
dim_size *= shape[i];
}
return index;
}
/** Check if a coordinate is within a valid region */
inline bool is_in_valid_region(const ValidRegion &valid_region, Coordinates coord)
{
for(size_t d = 0; d < Coordinates::num_max_dimensions; ++d)
{
if(coord[d] < valid_region.start(d) || coord[d] >= valid_region.end(d))
{
return false;
}
}
return true;
}
/** Create and initialize a tensor of the given type.
*
* @param[in] shape Tensor shape.
* @param[in] data_type Data type.
* @param[in] num_channels (Optional) Number of channels.
* @param[in] quantization_info (Optional) Quantization info for asymmetric quantized types.
* @param[in] data_layout (Optional) Data layout. Default is NCHW.
* @param[in] ctx (Optional) Pointer to the runtime context.
*
* @return Initialized tensor of given type.
*/
template <typename T>
inline T create_tensor(const TensorShape &shape, DataType data_type, int num_channels = 1,
QuantizationInfo quantization_info = QuantizationInfo(), DataLayout data_layout = DataLayout::NCHW, IRuntimeContext *ctx = nullptr)
{
T tensor(ctx);
TensorInfo info(shape, num_channels, data_type);
info.set_quantization_info(quantization_info);
info.set_data_layout(data_layout);
tensor.allocator()->init(info);
return tensor;
}
/** Create and initialize a tensor of the given type.
*
* @param[in] shape Tensor shape.
* @param[in] format Format type.
* @param[in] ctx (Optional) Pointer to the runtime context.
*
* @return Initialized tensor of given type.
*/
template <typename T>
inline T create_tensor(const TensorShape &shape, Format format, IRuntimeContext *ctx = nullptr)
{
TensorInfo info(shape, format);
T tensor(ctx);
tensor.allocator()->init(info);
return tensor;
}
/** Create and initialize a multi-image of the given type.
*
* @param[in] shape Tensor shape.
* @param[in] format Format type.
*
* @return Initialized tensor of given type.
*/
template <typename T>
inline T create_multi_image(const TensorShape &shape, Format format)
{
T multi_image;
multi_image.init(shape.x(), shape.y(), format);
return multi_image;
}
/** Create and initialize a HOG (Histogram of Oriented Gradients) of the given type.
*
* @param[in] hog_info HOGInfo object
*
* @return Initialized HOG of given type.
*/
template <typename T>
inline T create_HOG(const HOGInfo &hog_info)
{
T hog;
hog.init(hog_info);
return hog;
}
/** Create and initialize a Pyramid of the given type.
*
* @param[in] pyramid_info The PyramidInfo object.
*
* @return Initialized Pyramid of given type.
*/
template <typename T>
inline T create_pyramid(const PyramidInfo &pyramid_info)
{
T pyramid;
pyramid.init_auto_padding(pyramid_info);
return pyramid;
}
/** Initialize a convolution matrix.
*
* @param[in, out] conv The input convolution matrix.
* @param[in] width The width of the convolution matrix.
* @param[in] height The height of the convolution matrix.
* @param[in] seed The random seed to be used.
*/
inline void init_conv(int16_t *conv, unsigned int width, unsigned int height, std::random_device::result_type seed)
{
std::mt19937 gen(seed);
std::uniform_int_distribution<int16_t> distribution_int16(-32768, 32767);
for(unsigned int i = 0; i < width * height; ++i)
{
conv[i] = distribution_int16(gen);
}
}
/** Initialize a separable convolution matrix.
*
* @param[in, out] conv The input convolution matrix.
* @param[in] width The width of the convolution matrix.
* @param[in] height The height of the convolution matrix.
* @param[in] seed The random seed to be used.
*/
inline void init_separable_conv(int16_t *conv, unsigned int width, unsigned int height, std::random_device::result_type seed)
{
std::mt19937 gen(seed);
// Set it between -128 and 127 to ensure the matrix does not overflow
std::uniform_int_distribution<int16_t> distribution_int16(-128, 127);
int16_t *conv_row = new int16_t[width];
int16_t *conv_col = new int16_t[height];
conv_row[0] = conv_col[0] = 1;
for(unsigned int i = 1; i < width; ++i)
{
conv_row[i] = distribution_int16(gen);
}
for(unsigned int i = 1; i < height; ++i)
{
conv_col[i] = distribution_int16(gen);
}
// Multiply two matrices
for(unsigned int i = 0; i < width; ++i)
{
for(unsigned int j = 0; j < height; ++j)
{
conv[i * width + j] = conv_col[i] * conv_row[j];
}
}
delete[] conv_row;
delete[] conv_col;
}
/** Create a vector with a uniform distribution of floating point values across the specified range.
*
* @param[in] num_values The number of values to be created.
* @param[in] min The minimum value in distribution (inclusive).
* @param[in] max The maximum value in distribution (inclusive).
* @param[in] seed The random seed to be used.
*
* @return A vector that contains the requested number of random floating point values
*/
template <typename T, typename = typename std::enable_if<std::is_floating_point<T>::value>::type>
inline std::vector<T> generate_random_real(unsigned int num_values, T min, T max, std::random_device::result_type seed)
{
std::vector<T> v(num_values);
std::mt19937 gen(seed);
std::uniform_real_distribution<T> dist(min, max);
for(unsigned int i = 0; i < num_values; ++i)
{
v.at(i) = dist(gen);
}
return v;
}
/** Create a vector of random keypoints for pyramid representation.
*
* @param[in] shape The shape of the input tensor.
* @param[in] num_keypoints The number of keypoints to be created.
* @param[in] seed The random seed to be used.
* @param[in] num_levels The number of pyramid levels.
*
* @return A vector that contains the requested number of random keypoints
*/
inline std::vector<KeyPoint> generate_random_keypoints(const TensorShape &shape, size_t num_keypoints, std::random_device::result_type seed, size_t num_levels = 1)
{
std::vector<KeyPoint> keypoints;
std::mt19937 gen(seed);
// Calculate distribution bounds
const auto min = static_cast<int>(std::pow(2, num_levels));
const auto max_width = static_cast<int>(shape.x());
const auto max_height = static_cast<int>(shape.y());
ARM_COMPUTE_ERROR_ON(min > max_width || min > max_height);
// Create distributions
std::uniform_int_distribution<> dist_w(min, max_width);
std::uniform_int_distribution<> dist_h(min, max_height);
for(unsigned int i = 0; i < num_keypoints; i++)
{
KeyPoint keypoint;
keypoint.x = dist_w(gen);
keypoint.y = dist_h(gen);
keypoint.tracking_status = 1;
keypoints.push_back(keypoint);
}
return keypoints;
}
template <typename T, typename ArrayAccessor_T>
inline void fill_array(ArrayAccessor_T &&array, const std::vector<T> &v)
{
array.resize(v.size());
std::memcpy(array.buffer(), v.data(), v.size() * sizeof(T));
}
/** Obtain numpy type string from DataType.
*
* @param[in] data_type Data type.
*
* @return numpy type string.
*/
inline std::string get_typestring(DataType data_type)
{
// Check endianness
const unsigned int i = 1;
const char *c = reinterpret_cast<const char *>(&i);
std::string endianness;
if(*c == 1)
{
endianness = std::string("<");
}
else
{
endianness = std::string(">");
}
const std::string no_endianness("|");
switch(data_type)
{
case DataType::U8:
return no_endianness + "u" + support::cpp11::to_string(sizeof(uint8_t));
case DataType::S8:
return no_endianness + "i" + support::cpp11::to_string(sizeof(int8_t));
case DataType::U16:
return endianness + "u" + support::cpp11::to_string(sizeof(uint16_t));
case DataType::S16:
return endianness + "i" + support::cpp11::to_string(sizeof(int16_t));
case DataType::U32:
return endianness + "u" + support::cpp11::to_string(sizeof(uint32_t));
case DataType::S32:
return endianness + "i" + support::cpp11::to_string(sizeof(int32_t));
case DataType::U64:
return endianness + "u" + support::cpp11::to_string(sizeof(uint64_t));
case DataType::S64:
return endianness + "i" + support::cpp11::to_string(sizeof(int64_t));
case DataType::F32:
return endianness + "f" + support::cpp11::to_string(sizeof(float));
case DataType::F64:
return endianness + "f" + support::cpp11::to_string(sizeof(double));
case DataType::SIZET:
return endianness + "u" + support::cpp11::to_string(sizeof(size_t));
default:
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
}
}
/** Sync if necessary.
*/
template <typename TensorType>
inline void sync_if_necessary()
{
#ifdef ARM_COMPUTE_CL
if(opencl_is_available() && std::is_same<typename std::decay<TensorType>::type, arm_compute::CLTensor>::value)
{
CLScheduler::get().sync();
}
#endif /* ARM_COMPUTE_CL */
}
/** Sync tensor if necessary.
*
* @note: If the destination tensor not being used on OpenGL ES, GPU will optimize out the operation.
*
* @param[in] tensor Tensor to be sync.
*/
template <typename TensorType>
inline void sync_tensor_if_necessary(TensorType &tensor)
{
#ifdef ARM_COMPUTE_GC
if(opengles31_is_available() && std::is_same<typename std::decay<TensorType>::type, arm_compute::GCTensor>::value)
{
// Force sync the tensor by calling map and unmap.
IGCTensor &t = dynamic_cast<IGCTensor &>(tensor);
t.map();
t.unmap();
}
#else /* ARM_COMPUTE_GC */
ARM_COMPUTE_UNUSED(tensor);
#endif /* ARM_COMPUTE_GC */
}
} // namespace test
} // namespace arm_compute
#endif /* ARM_COMPUTE_TEST_UTILS_H */
|