1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
|
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/kernels/CLFillBorderKernel.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/CL/CLTensor.h"
#include "arm_compute/runtime/CL/CLTensorAllocator.h"
#include "arm_compute/runtime/CL/functions/CLDeconvolutionLayer.h"
#include "tests/CL/CLAccessor.h"
#include "tests/PaddingCalculator.h"
#include "tests/datasets/ShapeDatasets.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Macros.h"
#include "tests/framework/datasets/Datasets.h"
#include "tests/validation/Validation.h"
#include "tests/validation/fixtures/DeconvolutionLayerFixture.h"
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace
{
constexpr AbsoluteTolerance<float> tolerance_fp32(0.001f); /**< Tolerance for floating point tests */
RelativeTolerance<half_float::half> tolerance_f16(half_float::half(0.2)); /**< Tolerance value for comparing reference's for DataType::F16 */
constexpr AbsoluteTolerance<float> tolerance_qasymm8(1.0); /**< Tolerance value for comparing reference's output against implementation's output for quantized data types */
constexpr float tolerance_num = 0.07f; /**< Tolerance number */
const auto data9x9_small_asymm = framework::dataset::make("InputShape", TensorShape{ 10U, 10U, 1U, 1U }) *framework::dataset::make("StrideX", 2) *framework::dataset::make("StrideY",
2)
*framework::dataset::make("PadLeft", 3)
*framework::dataset::make("PadRight", 4) *framework::dataset::make("PadTop", 3) *framework::dataset::make("PadBottom", 4) *framework::dataset::make("NumKernels", { 1 });
const auto data9x9_large_asymm = framework::dataset::make("InputShape", TensorShape{ 640U, 360U, 56U, 1U }) *framework::dataset::make("StrideX", 2) *framework::dataset::make("StrideY",
2)
*framework::dataset::make("PadLeft", 3)
*framework::dataset::make("PadRight", 4) *framework::dataset::make("PadTop", 3) *framework::dataset::make("PadBottom", 4) *framework::dataset::make("NumKernels", { 1 });
const auto data4x4 = datasets::SmallDeconvolutionShapes() * framework::dataset::make("StrideX", 1, 4) * framework::dataset::make("StrideY", 1, 4) * framework::dataset::make("PadX", 0, 3)
* framework::dataset::make("PadY", 0, 3) * framework::dataset::make("NumKernels", { 3 });
const auto data3x3 = datasets::SmallDeconvolutionShapes() * framework::dataset::make("StrideX", 1, 4) * framework::dataset::make("StrideY", 1, 4) * framework::dataset::make("PadX", 0, 2)
* framework::dataset::make("PadY", 0, 2) * framework::dataset::make("NumKernels", { 3 });
const auto data3x3_asymm = datasets::SmallDeconvolutionShapes() * framework::dataset::make("StrideX", 1, 2) * framework::dataset::make("StrideY", 1, 2) * framework::dataset::make("PadLeft", 0, 1)
* framework::dataset::make("PadRight", 0, 1) * framework::dataset::make("PadTop", 0, 1) * framework::dataset::make("PadBottom", 0, 1) * framework::dataset::make("NumKernels", { 3 });
const auto data3x3_precommit = datasets::SmallDeconvolutionShapes() * framework::dataset::make("StrideX", 1, 2) * framework::dataset::make("StrideY", 1, 2) * framework::dataset::make("PadX", 0, 2)
* framework::dataset::make("PadY", 0, 2) * framework::dataset::make("NumKernels", { 3 });
const auto data2x2_precommit = datasets::SmallDeconvolutionShapes() * framework::dataset::make("StrideX", 2) * framework::dataset::make("StrideY", 2) * framework::dataset::make("PadX", 1)
* framework::dataset::make("PadY", 1) * framework::dataset::make("NumKernels", { 3 });
const auto data1x1 = datasets::SmallDeconvolutionShapes() * framework::dataset::make("StrideX", 1, 4) * framework::dataset::make("StrideY", 1, 4) * framework::dataset::make("PadX", 0, 1)
* framework::dataset::make("PadY", 0, 1) * framework::dataset::make("NumKernels", { 3 });
const auto data_layouts_dataset = framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC });
const auto add_bias_dataset = framework::dataset::make("AddBias", { true, false });
} // namespace
TEST_SUITE(CL)
TEST_SUITE(DeconvolutionLayer)
// *INDENT-OFF*
// clang-format off
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(zip(zip(
framework::dataset::make("InputInfo", { TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), // Mismatching data type
TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), // Invalid weights shape
TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F16), // Non supported data type
TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), // Invalid bias shape
TensorInfo(TensorShape(13U, 11U, 4U, 3U), 1, DataType::F32), // Window shrink
TensorInfo(TensorShape(32U, 16U, 2U), 1, DataType::F32),
}),
framework::dataset::make("WeightsInfo", { TensorInfo(TensorShape(3U, 3U, 2U, 2U), 1, DataType::F16),
TensorInfo(TensorShape(3U, 3U, 2U, 4U), 1, DataType::F32),
TensorInfo(TensorShape(3U, 3U, 2U, 2U), 1, DataType::F16),
TensorInfo(TensorShape(3U, 2U, 2U, 2U), 1, DataType::F32),
TensorInfo(TensorShape(3U, 3U, 4U), 1, DataType::F32),
TensorInfo(TensorShape(1U, 1U, 2U, 4U), 1, DataType::F32),
})),
framework::dataset::make("BiasInfo", { TensorInfo(TensorShape(1U), 1, DataType::F16),
TensorInfo(TensorShape(1U), 1, DataType::F32),
TensorInfo(TensorShape(1U), 1, DataType::F32),
TensorInfo(TensorShape(25U, 11U), 1, DataType::F32),
TensorInfo(TensorShape(1U), 1, DataType::F32),
TensorInfo(TensorShape(4U), 1, DataType::F32),
})),
framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(25U, 11U, 2U), 1, DataType::F16),
TensorInfo(TensorShape(25U, 10U, 2U), 1, DataType::F32),
TensorInfo(TensorShape(25U, 11U, 2U), 1, DataType::F32),
TensorInfo(TensorShape(13U, 13U, 2U), 1, DataType::F32),
TensorInfo(TensorShape(11U, 9U, 1U, 3U), 1, DataType::F32),
TensorInfo(TensorShape(32U, 16U, 4U), 1, DataType::F32),
})),
framework::dataset::make("PadStrideInfo", { PadStrideInfo(1, 1, 0, 0),
PadStrideInfo(1, 1, 0, 0),
PadStrideInfo(1, 1, 0, 0),
PadStrideInfo(1, 1, 0, 0),
PadStrideInfo(1, 1, 1, 1),
PadStrideInfo(1, 1, 0, 0),
})),
framework::dataset::make("Expected", { false, false, false, false, false, true })),
input_info, weights_info, bias_info, output_info, pad_info, expected)
{
bool is_valid = bool(CLDeconvolutionLayer::validate(&input_info.clone()->set_is_resizable(false), &weights_info.clone()->set_is_resizable(false), &bias_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false), pad_info));
ARM_COMPUTE_EXPECT(is_valid == expected, framework::LogLevel::ERRORS);
}
// clang-format on
// *INDENT-ON*
template <typename T>
using CLDeconvolutionLayerFixture4x4 = DeconvolutionValidationFixture<CLTensor, CLAccessor, CLDeconvolutionLayer, T, 4, 4>;
template <typename T>
using CLDeconvolutionLayerFixture3x3 = DeconvolutionValidationFixture<CLTensor, CLAccessor, CLDeconvolutionLayer, T, 3, 3>;
template <typename T>
using CLDeconvolutionLayerAsymmFixture3x3 = DeconvolutionValidationAsymmFixture<CLTensor, CLAccessor, CLDeconvolutionLayer, T, 3, 3>;
template <typename T>
using CLDeconvolutionLayerFixture2x2 = DeconvolutionValidationFixture<CLTensor, CLAccessor, CLDeconvolutionLayer, T, 2, 2>;
template <typename T>
using CLDeconvolutionLayerFixture1x1 = DeconvolutionValidationFixture<CLTensor, CLAccessor, CLDeconvolutionLayer, T, 1, 1>;
template <typename T>
using CLDeconvolutionLayerAsymmFixture9x9 = DeconvolutionValidationAsymmFixture<CLTensor, CLAccessor, CLDeconvolutionLayer, T, 9, 9>;
TEST_SUITE(Float)
TEST_SUITE(FP32)
TEST_SUITE(W4x4)
FIXTURE_DATA_TEST_CASE(Run, CLDeconvolutionLayerFixture4x4<float>, framework::DatasetMode::NIGHTLY, combine(combine(combine(data4x4, framework::dataset::make("DataType", DataType::F32)),
data_layouts_dataset),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_fp32);
}
TEST_SUITE_END() // W4x4
TEST_SUITE(W3x3)
FIXTURE_DATA_TEST_CASE(RunSmall, CLDeconvolutionLayerFixture3x3<float>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(data3x3_precommit, framework::dataset::make("DataType",
DataType::F32)),
data_layouts_dataset),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_fp32);
}
FIXTURE_DATA_TEST_CASE(RunAsymm, CLDeconvolutionLayerAsymmFixture3x3<float>, framework::DatasetMode::NIGHTLY, combine(combine(combine(data3x3_asymm, framework::dataset::make("DataType",
DataType::F32)),
data_layouts_dataset),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_fp32);
}
FIXTURE_DATA_TEST_CASE(RunLarge, CLDeconvolutionLayerFixture3x3<float>, framework::DatasetMode::NIGHTLY, combine(combine(combine(data3x3, framework::dataset::make("DataType", DataType::F32)),
data_layouts_dataset),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_fp32);
}
TEST_SUITE_END() // W3x3
TEST_SUITE(W2x2)
FIXTURE_DATA_TEST_CASE(RunSmall, CLDeconvolutionLayerFixture2x2<float>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(data2x2_precommit, framework::dataset::make("DataType",
DataType::F32)),
data_layouts_dataset),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_fp32);
}
TEST_SUITE_END() // W2x2
TEST_SUITE(W1x1)
FIXTURE_DATA_TEST_CASE(Run, CLDeconvolutionLayerFixture1x1<float>, framework::DatasetMode::NIGHTLY, combine(combine(combine(data1x1, framework::dataset::make("DataType", DataType::F32)),
data_layouts_dataset),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_fp32);
}
TEST_SUITE_END() // W1x1
TEST_SUITE(W9x9)
FIXTURE_DATA_TEST_CASE(RunSmall, CLDeconvolutionLayerAsymmFixture9x9<float>, framework::DatasetMode::ALL, combine(combine(combine(data9x9_small_asymm, framework::dataset::make("DataType",
DataType::F32)),
framework::dataset::make("DataLayout", { DataLayout::NHWC })),
framework::dataset::make("AddBias", { false })))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_fp32);
}
TEST_SUITE_END() // W9x9
TEST_SUITE_END() // FP32
TEST_SUITE(FP16)
TEST_SUITE(W4x4)
FIXTURE_DATA_TEST_CASE(Run, CLDeconvolutionLayerFixture4x4<half>, framework::DatasetMode::NIGHTLY, combine(combine(combine(data4x4, framework::dataset::make("DataType", DataType::F16)),
data_layouts_dataset),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_f16, tolerance_num);
}
TEST_SUITE_END() // W4x4
TEST_SUITE(W3x3)
FIXTURE_DATA_TEST_CASE(RunSmall, CLDeconvolutionLayerFixture3x3<half>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(data3x3_precommit, framework::dataset::make("DataType",
DataType::F16)),
data_layouts_dataset),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_f16, tolerance_num);
}
FIXTURE_DATA_TEST_CASE(RunLarge, CLDeconvolutionLayerFixture3x3<half>, framework::DatasetMode::NIGHTLY, combine(combine(combine(data3x3, framework::dataset::make("DataType", DataType::F16)),
data_layouts_dataset),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_f16, tolerance_num);
}
TEST_SUITE_END() // W3x3
TEST_SUITE(W2x2)
FIXTURE_DATA_TEST_CASE(RunSmall, CLDeconvolutionLayerFixture2x2<half>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(data2x2_precommit, framework::dataset::make("DataType",
DataType::F16)),
data_layouts_dataset),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_f16);
}
TEST_SUITE_END() // W2x2
TEST_SUITE(W1x1)
FIXTURE_DATA_TEST_CASE(Run, CLDeconvolutionLayerFixture1x1<half>, framework::DatasetMode::NIGHTLY, combine(combine(combine(data1x1, framework::dataset::make("DataType", DataType::F16)),
data_layouts_dataset),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_f16, tolerance_num);
}
TEST_SUITE_END() // W1x1
TEST_SUITE_END() // FP16
TEST_SUITE_END() // Float
template <typename T>
using CLDeconvolutionLayerQuantizedFixture4x4 = DeconvolutionValidationQuantizedFixture<CLTensor, CLAccessor, CLDeconvolutionLayer, T, 4, 4>;
template <typename T>
using CLDeconvolutionLayerQuantizedFixture3x3 = DeconvolutionValidationQuantizedFixture<CLTensor, CLAccessor, CLDeconvolutionLayer, T, 3, 3>;
template <typename T>
using CLDeconvolutionLayerQuantizedFixture2x2 = DeconvolutionValidationQuantizedFixture<CLTensor, CLAccessor, CLDeconvolutionLayer, T, 2, 2>;
template <typename T>
using CLDeconvolutionLayerQuantizedFixture1x1 = DeconvolutionValidationQuantizedFixture<CLTensor, CLAccessor, CLDeconvolutionLayer, T, 1, 1>;
TEST_SUITE(Quantized)
TEST_SUITE(QASYMM8)
TEST_SUITE(W4x4)
FIXTURE_DATA_TEST_CASE(Run, CLDeconvolutionLayerQuantizedFixture4x4<uint8_t>, framework::DatasetMode::NIGHTLY, combine(combine(combine(combine(combine(data4x4, framework::dataset::make("DataType",
DataType::QASYMM8)),
data_layouts_dataset),
framework::dataset::make("InputQuantizationInfo", { QuantizationInfo(1.f / 255.f, 10), QuantizationInfo(2.f / 255.f, 5) })),
framework::dataset::make("OutputQuantizationInfo", { QuantizationInfo(3.f / 255.f, 5), QuantizationInfo(4.f / 255.f, 10) })),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_qasymm8, tolerance_num);
}
TEST_SUITE_END() // W4x4
TEST_SUITE(W3x3)
FIXTURE_DATA_TEST_CASE(RunSmall, CLDeconvolutionLayerQuantizedFixture3x3<uint8_t>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(combine(combine(data3x3_precommit,
framework::dataset::make("DataType",
DataType::QASYMM8)),
data_layouts_dataset),
framework::dataset::make("InputQuantizationInfo", { QuantizationInfo(1.f / 255.f, 10), QuantizationInfo(2.f / 255.f, 4) })),
framework::dataset::make("OutputQuantizationInfo", { QuantizationInfo(3.f / 255.f, 10), QuantizationInfo(4.f / 255.f, 5) })),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_qasymm8, tolerance_num);
}
FIXTURE_DATA_TEST_CASE(RunLarge, CLDeconvolutionLayerQuantizedFixture3x3<uint8_t>, framework::DatasetMode::NIGHTLY, combine(combine(combine(combine(combine(data3x3,
framework::dataset::make("DataType",
DataType::QASYMM8)),
data_layouts_dataset),
framework::dataset::make("InputQuantizationInfo", { QuantizationInfo(1.f / 255.f, 10), QuantizationInfo(2.f / 255.f, 128) })),
framework::dataset::make("OutputQuantizationInfo", { QuantizationInfo(3.f / 255.f, 128), QuantizationInfo(4.f / 255.f, 128) })),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_qasymm8, tolerance_num);
}
TEST_SUITE_END() // W3x3
TEST_SUITE(W2x2)
FIXTURE_DATA_TEST_CASE(RunSmall, CLDeconvolutionLayerQuantizedFixture2x2<uint8_t>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(combine(combine(data2x2_precommit,
framework::dataset::make("DataType", DataType::QASYMM8)),
data_layouts_dataset),
framework::dataset::make("InputQuantizationInfo", { QuantizationInfo(1.f / 255.f, 128), QuantizationInfo(2.f / 255.f, 128) })),
framework::dataset::make("OutputQuantizationInfo", { QuantizationInfo(3.f / 255.f, 64), QuantizationInfo(4.f / 255.f, 128) })),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_qasymm8, tolerance_num);
}
TEST_SUITE_END() // W2x2
TEST_SUITE(W1x1)
FIXTURE_DATA_TEST_CASE(Run, CLDeconvolutionLayerQuantizedFixture1x1<uint8_t>, framework::DatasetMode::NIGHTLY, combine(combine(combine(combine(combine(data1x1, framework::dataset::make("DataType",
DataType::QASYMM8)),
data_layouts_dataset),
framework::dataset::make("InputQuantizationInfo", { QuantizationInfo(1.f / 255.f, 0), QuantizationInfo(2.f / 255.f, 0) })),
framework::dataset::make("OutputQuantizationInfo", { QuantizationInfo(3.f / 255.f, 0), QuantizationInfo(4.f / 255.f, 0) })),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_qasymm8, tolerance_num);
}
TEST_SUITE_END() // W1x1
TEST_SUITE_END() // QASYMM8
TEST_SUITE(QASYMM8_SIGNED)
// QASYMM8_SIGNED: zero-point in range [-128, 127]
// QASYMM8 : zero-point in range [0 , 255]
TEST_SUITE(W4x4)
FIXTURE_DATA_TEST_CASE(Run, CLDeconvolutionLayerQuantizedFixture4x4<int8_t>, framework::DatasetMode::NIGHTLY, combine(combine(combine(combine(combine(data4x4, framework::dataset::make("DataType",
DataType::QASYMM8_SIGNED)),
data_layouts_dataset),
framework::dataset::make("InputQuantizationInfo", { QuantizationInfo(1.f / 255.f, 10), QuantizationInfo(2.f / 255.f, 5) })),
framework::dataset::make("OutputQuantizationInfo", { QuantizationInfo(3.f / 255.f, 5), QuantizationInfo(4.f / 255.f, 10) })),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_qasymm8, tolerance_num);
}
TEST_SUITE_END() // W4x4
TEST_SUITE(W3x3)
// DirectDeconvolution
FIXTURE_DATA_TEST_CASE(RunSmall, CLDeconvolutionLayerQuantizedFixture3x3<int8_t>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(combine(combine(data3x3_precommit,
framework::dataset::make("DataType",
DataType::QASYMM8_SIGNED)),
data_layouts_dataset),
framework::dataset::make("InputQuantizationInfo", { QuantizationInfo(1.f / 255.f, 10), QuantizationInfo(2.f / 255.f, 4) })),
framework::dataset::make("OutputQuantizationInfo", { QuantizationInfo(3.f / 255.f, 10), QuantizationInfo(4.f / 255.f, 5) })),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_qasymm8, tolerance_num);
}
FIXTURE_DATA_TEST_CASE(RunLarge, CLDeconvolutionLayerQuantizedFixture3x3<int8_t>, framework::DatasetMode::NIGHTLY, combine(combine(combine(combine(combine(data3x3,
framework::dataset::make("DataType",
DataType::QASYMM8_SIGNED)),
data_layouts_dataset),
framework::dataset::make("InputQuantizationInfo", { QuantizationInfo(1.f / 255.f, -10), QuantizationInfo(2.f / 255.f, 127) })),
framework::dataset::make("OutputQuantizationInfo", { QuantizationInfo(3.f / 255.f, 64), QuantizationInfo(4.f / 255.f, -128) })),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_qasymm8, tolerance_num);
}
TEST_SUITE_END() // W3x3
TEST_SUITE(W2x2) // GEMMDeconvolution
FIXTURE_DATA_TEST_CASE(RunSmall, CLDeconvolutionLayerQuantizedFixture2x2<int8_t>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(combine(combine(data2x2_precommit,
framework::dataset::make("DataType", DataType::QASYMM8_SIGNED)),
data_layouts_dataset),
framework::dataset::make("InputQuantizationInfo", { QuantizationInfo(1.f / 255.f, 127), QuantizationInfo(2.f / 255.f, -128) })),
framework::dataset::make("OutputQuantizationInfo", { QuantizationInfo(3.f / 255.f, -10), QuantizationInfo(4.f / 255.f, 64) })),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_qasymm8, tolerance_num);
}
TEST_SUITE_END() // W2x2
TEST_SUITE(W1x1) // DirectDeconvolution and GEMMDeconvolution
FIXTURE_DATA_TEST_CASE(Run, CLDeconvolutionLayerQuantizedFixture1x1<int8_t>, framework::DatasetMode::NIGHTLY, combine(combine(combine(combine(combine(data1x1, framework::dataset::make("DataType",
DataType::QASYMM8_SIGNED)),
data_layouts_dataset),
framework::dataset::make("InputQuantizationInfo", { QuantizationInfo(1.f / 255.f, 0), QuantizationInfo(2.f / 255.f, 0) })),
framework::dataset::make("OutputQuantizationInfo", { QuantizationInfo(3.f / 255.f, 0), QuantizationInfo(4.f / 255.f, 0) })),
add_bias_dataset))
{
// Validate output
validate(CLAccessor(_target), _reference, tolerance_qasymm8, tolerance_num);
}
TEST_SUITE_END() // W1x1
TEST_SUITE_END() // QASYMM8_SIGNED
TEST_SUITE_END() // Quantized
TEST_SUITE_END() // DeconvolutionLayer
TEST_SUITE_END() // CL
} // namespace validation
} // namespace test
} // namespace arm_compute
|