1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
/*
* Copyright (c) 2018-2019 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/Types.h"
#include "arm_compute/runtime/CL/CLTensor.h"
#include "arm_compute/runtime/CL/CLTensorAllocator.h"
#include "arm_compute/runtime/CL/functions/CLConvolutionLayer.h"
#include "arm_compute/runtime/CL/functions/CLGEMMConvolutionLayer.h"
#include "tests/CL/CLAccessor.h"
#include "tests/PaddingCalculator.h"
#include "tests/datasets/DilatedConvolutionLayerDataset.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Macros.h"
#include "tests/framework/datasets/Datasets.h"
#include "tests/validation/Validation.h"
#include "tests/validation/fixtures/ConvolutionLayerFixture.h"
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace
{
RelativeTolerance<float> rel_tolerance_f32(0.05f); /**< Relative tolerance value for comparing reference's output against implementation's output for DataType::F32 */
RelativeTolerance<half_float::half> rel_tolerance_f16(half_float::half(0.2)); /**< Relative tolerance value for comparing reference's output against implementation's output for DataType::F16 */
constexpr AbsoluteTolerance<float> abs_tolerance_qasymm8(1); /**< Relative tolerance value for comparing reference's output against implementation's output for quantized data types */
constexpr float abs_tolerance_f32 = 0.001f; /**< Absolute tolerance value for comparing reference's output against implementation's output for DataType::F32 */
constexpr float abs_tolerance_f16 = 0.3f; /**< Absolute tolerance value for comparing reference's output against implementation's output for DataType::F16 */
constexpr float tolerance_num_f16 = 0.07f; /**< Tolerance number for FP16 */
/** CNN data types */
const auto CNNDataTypes = framework::dataset::make("DataType",
{
DataType::F16,
DataType::F32,
DataType::QASYMM8,
});
} // namespace
TEST_SUITE(CL)
TEST_SUITE(DilatedConvolutionLayer)
DATA_TEST_CASE(ValidateConvolutionMethod, framework::DatasetMode::ALL, zip(zip(zip(zip(zip(zip(
framework::dataset::make("InputInfo", { TensorInfo(TensorShape(17U, 31U, 2U), 1, DataType::F32),
TensorInfo(TensorShape(17U, 31U, 2U), 1, DataType::F32),
TensorInfo(TensorShape(23U, 27U, 23U, 4U), 1, DataType::F32),
TensorInfo(TensorShape(3U, 3U, 2U, 1U), 1, DataType::F32),
TensorInfo(TensorShape(33U, 27U, 7U, 4U), 1, DataType::F32)
}),
framework::dataset::make("WeightsInfo", { TensorInfo(TensorShape(5U, 5U, 2U, 19U), 1, DataType::F32),
TensorInfo(TensorShape(5U, 5U, 2U, 19U), 1, DataType::F32),
TensorInfo(TensorShape(3U, 3U, 23U, 21U), 1, DataType::F32),
TensorInfo(TensorShape(3U, 3U, 5U, 21U), 1, DataType::F32),
TensorInfo(TensorShape(5U, 5U, 7U, 16U), 1, DataType::F16)
})),
framework::dataset::make("OutputInfo", { TensorInfo(TensorShape(15U, 15U, 19U), 1, DataType::F32),
TensorInfo(TensorShape(15U, 15U, 19U), 1, DataType::F32),
TensorInfo(TensorShape(21U, 25U, 21U, 4U), 1, DataType::F32),
TensorInfo(TensorShape(11U, 25U, 21U), 1, DataType::F32),
TensorInfo(TensorShape(11U, 12U, 16U, 4U), 1, DataType::F32)
})),
framework::dataset::make("ConvInfo", { PadStrideInfo(1, 2, 1, 1),
PadStrideInfo(1, 2, 1, 1),
PadStrideInfo(1, 1, 0, 0),
PadStrideInfo(2, 1, 0, 0),
PadStrideInfo(3, 2, 1, 0)
})),
framework::dataset::make("GpuTarget", { GPUTarget::BIFROST,
GPUTarget::MIDGARD,
GPUTarget::G71,
GPUTarget::MIDGARD,
GPUTarget::BIFROST
})),
framework::dataset::make("Dilation", { Size2D(1U, 1U),
Size2D(1U, 1U),
Size2D(1U, 1U),
Size2D(2U, 2U),
Size2D(3U, 3U)
})),
framework::dataset::make("Expected", { ConvolutionMethod::GEMM, ConvolutionMethod::GEMM, ConvolutionMethod::WINOGRAD, ConvolutionMethod::GEMM, ConvolutionMethod::GEMM })),
input_info, weights_info, output_info, conv_info, gpu_target, dilation, expected)
{
ConvolutionMethod is_valid = CLConvolutionLayer::get_convolution_method(&input_info.clone()->set_is_resizable(true),
&weights_info.clone()->set_is_resizable(true),
&output_info.clone()->set_is_resizable(true), conv_info, WeightsInfo(), ActivationLayerInfo(), gpu_target, dilation);
ARM_COMPUTE_EXPECT(is_valid == expected, framework::LogLevel::ERRORS);
}
TEST_SUITE_END()
TEST_SUITE(GEMMDilatedConvolutionLayer)
DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, combine(datasets::SmallDilatedConvolutionLayerDataset(),
CNNDataTypes),
input_shape, weights_shape, bias_shape, output_shape, info, dilation, data_type)
{
auto bias_data_type = is_data_type_quantized_asymmetric(data_type) ? DataType::S32 : data_type;
// Create tensors
CLTensor src = create_tensor<CLTensor>(input_shape, data_type, 1, QuantizationInfo(2.f / 255.f, 127));
CLTensor weights = create_tensor<CLTensor>(weights_shape, data_type, 1, QuantizationInfo(2.f / 255.f, 127));
CLTensor bias = create_tensor<CLTensor>(bias_shape, bias_data_type, 1, QuantizationInfo(2.f / 255.f, 127));
CLTensor dst = create_tensor<CLTensor>(output_shape, data_type, 1, QuantizationInfo(2.f / 255.f, 127));
ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(weights.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
const QuantizationInfo src_quantization_info = src.info()->quantization_info();
const QuantizationInfo weights_quantization_info = weights.info()->quantization_info();
// Create and configure function
CLGEMMConvolutionLayer conv;
conv.configure(&src, &weights, &bias, &dst, info, WeightsInfo(), dilation);
// Validate valid region
const ValidRegion src_valid_region = shape_to_valid_region(input_shape);
const ValidRegion weights_valid_region = shape_to_valid_region(weights_shape);
const ValidRegion bias_valid_region = shape_to_valid_region(bias_shape);
const ValidRegion dst_valid_region = shape_to_valid_region(output_shape);
validate(src.info()->valid_region(), src_valid_region);
validate(weights.info()->valid_region(), weights_valid_region);
validate(bias.info()->valid_region(), bias_valid_region);
validate(dst.info()->valid_region(), dst_valid_region);
// Validate QuantizationInfo
ARM_COMPUTE_EXPECT(src.info()->quantization_info() == src_quantization_info, framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(weights.info()->quantization_info() == weights_quantization_info, framework::LogLevel::ERRORS);
// Validate padding
//TODO(COMPMID-415) Need to validate padding?
}
template <typename T>
using CLGEMMDilatedConvolutionLayerFixture = ConvolutionValidationFixture<CLTensor, CLAccessor, CLGEMMConvolutionLayer, T>;
TEST_SUITE(Float)
TEST_SUITE(FP16)
FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMDilatedConvolutionLayerFixture<half>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(combine(datasets::SmallDilatedConvolutionLayerDataset(),
framework::dataset::make("ReshapeWeights", { true })),
framework::dataset::make("DataType", DataType::F16)),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
framework::dataset::make("ActivationLayerInfo", ActivationLayerInfo())))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f16, 0.0f, abs_tolerance_f16);
}
FIXTURE_DATA_TEST_CASE(RunLarge, CLGEMMDilatedConvolutionLayerFixture<half>, framework::DatasetMode::NIGHTLY, combine(combine(combine(combine(datasets::LargeDilatedConvolutionLayerDataset(),
framework::dataset::make("ReshapeWeights", { true })),
framework::dataset::make("DataType", DataType::F16)),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
framework::dataset::make("ActivationLayerInfo", ActivationLayerInfo())))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f16, tolerance_num_f16);
}
TEST_SUITE_END()
TEST_SUITE(FP32)
FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMDilatedConvolutionLayerFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(combine(datasets::SmallDilatedConvolutionLayerDataset(),
framework::dataset::make("ReshapeWeights", { true })),
framework::dataset::make("DataType", DataType::F32)),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
framework::dataset::make("ActivationLayerInfo", ActivationLayerInfo())))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunLarge, CLGEMMDilatedConvolutionLayerFixture<float>, framework::DatasetMode::NIGHTLY, combine(combine(combine(combine(datasets::LargeDilatedConvolutionLayerDataset(),
framework::dataset::make("ReshapeWeights", { true })),
framework::dataset::make("DataType", DataType::F32)),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
framework::dataset::make("ActivationLayerInfo", ActivationLayerInfo())))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
TEST_SUITE_END()
TEST_SUITE_END()
template <typename T>
using CLGEMMDilatedConvolutionLayerQuantizedFixture = ConvolutionValidationQuantizedFixture<CLTensor, CLAccessor, CLGEMMConvolutionLayer, T>;
TEST_SUITE(Quantized)
TEST_SUITE(QASYMM8)
FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMDilatedConvolutionLayerQuantizedFixture<uint8_t>, framework::DatasetMode::PRECOMMIT,
combine(combine(combine(combine(combine(datasets::SmallDilatedConvolutionLayerDataset(),
framework::dataset::make("ReshapeWeights", { true })),
framework::dataset::make("DataType", DataType::QASYMM8)),
framework::dataset::make("DataLayout", { DataLayout::NCHW })),
framework::dataset::make("QuantizationInfo", { QuantizationInfo(2.f / 255.f, 10) })),
framework::dataset::make("ActivationLayerInfo", { ActivationLayerInfo() })))
{
// Validate output
validate(CLAccessor(_target), _reference, abs_tolerance_qasymm8);
}
FIXTURE_DATA_TEST_CASE(RunLarge, CLGEMMDilatedConvolutionLayerQuantizedFixture<uint8_t>, framework::DatasetMode::NIGHTLY,
combine(combine(combine(combine(combine(datasets::LargeDilatedConvolutionLayerDataset(),
framework::dataset::make("ReshapeWeights", { true })),
framework::dataset::make("DataType", DataType::QASYMM8)),
framework::dataset::make("DataLayout", { DataLayout::NCHW })),
framework::dataset::make("QuantizationInfo", { QuantizationInfo(2.f / 255.f, 0) })),
framework::dataset::make("ActivationLayerInfo", { ActivationLayerInfo() })))
{
// Validate output
validate(CLAccessor(_target), _reference, abs_tolerance_qasymm8);
}
TEST_SUITE_END()
TEST_SUITE_END()
TEST_SUITE_END()
TEST_SUITE_END()
} // namespace validation
} // namespace test
} // namespace arm_compute
|