1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
/*
* Copyright (c) 2019-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMReshapeLHSMatrixKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMReshapeRHSMatrixKernel.h"
#include "arm_compute/core/KernelDescriptors.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/CL/CLTensor.h"
#include "arm_compute/runtime/CL/CLTensorAllocator.h"
#include "tests/CL/CLAccessor.h"
#include "tests/CL/Helper.h"
#include "tests/PaddingCalculator.h"
#include "tests/datasets/ShapeDatasets.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Macros.h"
#include "tests/framework/datasets/Datasets.h"
#include "tests/validation/Validation.h"
#include "tests/validation/fixtures/GEMMFixture.h"
namespace arm_compute
{
namespace test
{
namespace validation
{
using namespace arm_compute::misc::shape_calculator;
// Create function for CLGEMMReshapeLHSMatrixKernel
using CLGEMMReshapeLHSMatrix = CLSynthetizeFunction<CLGEMMReshapeLHSMatrixKernel>;
// Create function for CLGEMMReshapeRHSMatrixKernel
using CLGEMMReshapeRHSMatrix = CLSynthetizeFunction<CLGEMMReshapeRHSMatrixKernel>;
// Create function for CLGEMMMatrixMultiplyKernel
using CLGEMMMatrixMultiplyReshaped = CLSynthetizeFunction<CLGEMMMatrixMultiplyKernel>;
// Fixture for GEMMMatrixMultiplyInterleavedTransposedValidationFixture
template <typename T>
using CLGEMMMatrixMultiplyReshapedFixture =
GEMMMatrixMultiplyInterleavedTransposedValidationFixture<CLTensor, CLAccessor, T, CLGEMMReshapeLHSMatrix, CLGEMMReshapeRHSMatrix, CLGEMMMatrixMultiplyReshaped>;
// Fixture for GEMMMatrixMultiplyInterleavedTransposed3DValidationFixture
template <typename T>
using CLGEMMMatrixMultiplyReshaped3DFixture =
GEMMMatrixMultiplyInterleavedTransposed3DValidationFixture<CLTensor, CLAccessor, T, CLGEMMReshapeLHSMatrix, CLGEMMReshapeRHSMatrix, CLGEMMMatrixMultiplyReshaped>;
namespace
{
// *INDENT-OFF*
// clang-format off
RelativeTolerance<float> rel_tolerance_f32(0.001f);
constexpr float abs_tolerance_f32(0.0001f);
RelativeTolerance<half> rel_tolerance_f16(half(0.2));
constexpr float tolerance_num_f16 = 0.02f;
/** Alpha values to test */
const auto alpha_values = framework::dataset::make("alpha", {1.0f, -0.75f} );
/** Beta values to test */
const auto beta_values = framework::dataset::make("beta", {-0.35f, 0.0f} );
/** M values to test */
const auto m_values = framework::dataset::make("M", {37, 1});
/** N values to test */
const auto n_values = framework::dataset::make("N", 51);
/** K values to test */
const auto k_values = framework::dataset::make("K", 23);
/** M_W values to test */
const auto m_w_values = framework::dataset::make("M_W", 5);
/** M_H values to test */
const auto m_h_values = framework::dataset::make("M_H", 7);
/** Batch size values to test */
const auto b_values = framework::dataset::make("batch_size", 1, 3);
/** Activation values to test */
const auto act_values = framework::dataset::make("Activation",
{
ActivationLayerInfo(),
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 8.f, 2.f),
});
/** V0 values to test */
const auto v0_values = framework::dataset::make("V0", 2);
/** H0 values to test */
const auto h0_values = framework::dataset::make("H0", 4);
/** Broadcast bias from vector to matrix */
const auto broadcast_bias_values = framework::dataset::make("broadcast_bias", {false, true} );
/** GPU architectures values to test */
const auto gpu_arch_values = framework::dataset::make("GPUArch",
{
GPUTarget::MIDGARD,
GPUTarget::BIFROST
});
/** Data types values to test in the configuration */
const auto data_type_values = framework::dataset::make("DataType",
{
DataType::F32,
DataType::F16
});
/** M values to test */
const auto fp16_mixed_precision_values = framework::dataset::make("fp16_mixed_precision", {true, false});
} // namespace
TEST_SUITE(CL)
TEST_SUITE(GEMMMatrixMultiplyInterleavedTransposed)
TEST_CASE(Negative, framework::DatasetMode::ALL)
{
// The following tests are already integrated in the GEMMMatrixMultiply validation because
// in common with this validation
// - Unsupported QASYMM8 data type
// - Unsupported SIZE_T data type
// - Mixed precision with F32
// - Max number of dimensions LHS matrix
// - Max number of dimensions RHS matrix
// Invalid LHS dimensions
{
// The correct shape should be: lhs = TensorInfo(TensorShape(256U, 1U, 1U, 1U), 1, DataType::F32);
const auto lhs = TensorInfo(TensorShape(256U, 2U, 1U, 1U), 1, DataType::F32);
const auto rhs = TensorInfo(TensorShape(104U, 3U, 1U, 1U), 1, DataType::F32);
const auto bias = TensorInfo(TensorShape(24U, 16U, 1U, 1U), 1, DataType::F32);
const auto out = TensorInfo(TensorShape(24U, 16U, 1U, 1U), 1, DataType::F32);
constexpr float alpha = 1.3f;
constexpr float beta = 0.7f;
const bool is_interleaved_transposed = true;
const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(16, 24, 13, 2, 4, 0, false, false);
const GPUTarget gpu_target = GPUTarget::MIDGARD;
const bool fp_mixed_precision = false;
const auto status = CLGEMMMatrixMultiplyKernel::validate(&lhs, &rhs, &bias, &out, alpha, beta, is_interleaved_transposed, reshape_info, gpu_target, fp_mixed_precision);
ARM_COMPUTE_EXPECT(bool(status) == false, framework::LogLevel::ERRORS);
}
// Invalid RHS dimensions
{
const auto lhs = TensorInfo(TensorShape(256U, 1U, 1U, 1U), 1, DataType::F32);
// The correct shape should be rhs = TensorInfo(TensorShape(104U, 3U, 1U, 1U), 1, DataType::F32);
const auto rhs = TensorInfo(TensorShape(104U, 4U, 1U, 1U), 1, DataType::F32);
const auto bias = TensorInfo(TensorShape(24U, 16U, 1U, 1U), 1, DataType::F32);
const auto out = TensorInfo(TensorShape(24U, 16U, 1U, 1U), 1, DataType::F32);
constexpr float alpha = 1.3f;
constexpr float beta = 0.7f;
const bool is_interleaved_transposed = true;
const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(16, 24, 13, 2, 4, 0, false, false);
const GPUTarget gpu_target = GPUTarget::MIDGARD;
const bool fp_mixed_precision = false;
const auto status = CLGEMMMatrixMultiplyKernel::validate(&lhs, &rhs, &bias, &out, alpha, beta, is_interleaved_transposed, reshape_info, gpu_target, fp_mixed_precision);
ARM_COMPUTE_EXPECT(bool(status) == false, framework::LogLevel::ERRORS);
}
// Broadcast bias
{
const auto lhs = TensorInfo(TensorShape(256U, 1U, 1U, 1U), 1, DataType::F32);
const auto rhs = TensorInfo(TensorShape(104U, 3U, 1U, 1U), 1, DataType::F32);
// The correct shape should be bias = TensorInfo(TensorShape(24U, 1U, 1U, 1U), 1, DataType::F32);
const auto bias = TensorInfo(TensorShape(24U, 16U, 1U, 1U), 1, DataType::F32);
const auto out = TensorInfo(TensorShape(24U, 16U, 1U, 1U), 1, DataType::F32);
constexpr float alpha = 1.3f;
constexpr float beta = 0.7f;
const bool is_interleaved_transposed = true;
const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(16, 24, 13, 2, 4, 0, false, true);
const GPUTarget gpu_target = GPUTarget::MIDGARD;
const bool fp_mixed_precision = false;
const auto status = CLGEMMMatrixMultiplyKernel::validate(&lhs, &rhs, &bias, &out, alpha, beta, is_interleaved_transposed, reshape_info, gpu_target, fp_mixed_precision);
ARM_COMPUTE_EXPECT(bool(status) == false, framework::LogLevel::ERRORS);
}
// Invalid dimensions for the bias
{
const auto lhs = TensorInfo(TensorShape(256U, 1U, 1U, 1U), 1, DataType::F32);
const auto rhs = TensorInfo(TensorShape(104U, 3U, 1U, 1U), 1, DataType::F32);
// The correct shape should be bias = TensorInfo(TensorShape(24U, 16U, 1U, 1U), 1, DataType::F32);
const auto bias = TensorInfo(TensorShape(25U, 16U, 1U, 1U), 1, DataType::F32);
const auto out = TensorInfo(TensorShape(24U, 16U, 1U, 1U), 1, DataType::F32);
constexpr float alpha = 1.3f;
constexpr float beta = 0.7f;
const bool is_interleaved_transposed = true;
const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(16, 24, 13, 2, 4, 0, false, false);
const GPUTarget gpu_target = GPUTarget::MIDGARD;
const bool fp_mixed_precision = false;
const auto status = CLGEMMMatrixMultiplyKernel::validate(&lhs, &rhs, &bias, &out, alpha, beta, is_interleaved_transposed, reshape_info, gpu_target, fp_mixed_precision);
ARM_COMPUTE_EXPECT(bool(status) == false, framework::LogLevel::ERRORS);
}
// Invalid dimensions for the output
{
const auto lhs = TensorInfo(TensorShape(256U, 1U, 1U, 1U), 1, DataType::F32);
const auto rhs = TensorInfo(TensorShape(104U, 3U, 1U, 1U), 1, DataType::F32);
const auto bias = TensorInfo(TensorShape(24U, 16U, 1U, 1U), 1, DataType::F32);
// The correct shape should be out = TensorInfo(TensorShape(24U, 16U, 1U, 1U), 1, DataType::F32);
const auto out = TensorInfo(TensorShape(24U, 13U, 1U, 1U), 1, DataType::F32);
constexpr float alpha = 1.3f;
constexpr float beta = 0.7f;
const bool is_interleaved_transposed = true;
const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(16, 24, 13, 2, 4, 0, false, false);
const GPUTarget gpu_target = GPUTarget::MIDGARD;
const bool fp_mixed_precision = false;
const auto status = CLGEMMMatrixMultiplyKernel::validate(&lhs, &rhs, &bias, &out, alpha, beta, is_interleaved_transposed, reshape_info, gpu_target, fp_mixed_precision);
ARM_COMPUTE_EXPECT(bool(status) == false, framework::LogLevel::ERRORS);
}
}
TEST_SUITE(Float)
TEST_SUITE(FP32)
FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMMatrixMultiplyReshapedFixture<float>, framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
m_values,
n_values),
k_values),
b_values),
alpha_values),
beta_values),
v0_values),
h0_values),
broadcast_bias_values),
framework::dataset::make("fp16_mixed_precision", false)),
act_values),
framework::dataset::make("DataType", DataType::F32)),
gpu_arch_values))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunSmall3D, CLGEMMMatrixMultiplyReshaped3DFixture<float>, framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
m_w_values,
m_h_values),
n_values),
k_values),
b_values),
alpha_values),
beta_values),
v0_values),
h0_values),
broadcast_bias_values),
framework::dataset::make("fp16_mixed_precision", false)),
act_values),
framework::dataset::make("DataType", DataType::F32)),
gpu_arch_values))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
TEST_SUITE_END() // FP32
TEST_SUITE(FP16)
FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMMatrixMultiplyReshapedFixture<half>, framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
m_values,
n_values),
k_values),
b_values),
alpha_values),
beta_values),
v0_values),
h0_values),
broadcast_bias_values),
fp16_mixed_precision_values),
act_values),
framework::dataset::make("DataType", DataType::F16)),
gpu_arch_values))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f16, tolerance_num_f16);
}
FIXTURE_DATA_TEST_CASE(RunSmall3D, CLGEMMMatrixMultiplyReshaped3DFixture<half>, framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
m_w_values,
m_h_values),
n_values),
k_values),
b_values),
alpha_values),
beta_values),
v0_values),
h0_values),
broadcast_bias_values),
fp16_mixed_precision_values),
act_values),
framework::dataset::make("DataType", DataType::F16)),
gpu_arch_values))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f16, tolerance_num_f16);
}
TEST_SUITE_END() // FP16
TEST_SUITE_END() // Float
TEST_SUITE_END() // GEMMMatrixMulipltyInterleavedTransposed
TEST_SUITE_END() // CL
} // namespace validation
} // namespace test
} // namespace arm_compute
|