1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
/*
* Copyright (c) 2019-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyNativeKernel.h"
#include "arm_compute/core/KernelDescriptors.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/CL/CLTensor.h"
#include "arm_compute/runtime/CL/CLTensorAllocator.h"
#include "tests/CL/CLAccessor.h"
#include "tests/CL/Helper.h"
#include "tests/PaddingCalculator.h"
#include "tests/datasets/ShapeDatasets.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Macros.h"
#include "tests/framework/datasets/Datasets.h"
#include "tests/validation/Validation.h"
#include "tests/validation/fixtures/GEMMFixture.h"
namespace arm_compute
{
namespace test
{
namespace validation
{
using namespace arm_compute::misc::shape_calculator;
// Create function for CLGEMMMatrixMultiplyNativeKernel
using CLGEMMMatrixMultiplyNative = CLSynthetizeFunction<CLGEMMMatrixMultiplyNativeKernel>;
// Fixture for CLGEMMMatrixMultiplyNative
template <typename T>
using CLGEMMMatrixMultiplyNativeFixture = GEMMMatrixMultiplyNativeValidationFixture<CLTensor, CLAccessor, T, CLGEMMMatrixMultiplyNative>;
// Fixture for CLGEMMMatrixMultiplyNative3D
template <typename T>
using CLGEMMMatrixMultiplyNative3DFixture = GEMMMatrixMultiplyNative3DValidationFixture<CLTensor, CLAccessor, T, CLGEMMMatrixMultiplyNative>;
namespace
{
// *INDENT-OFF*
// clang-format off
RelativeTolerance<float> rel_tolerance_f32(0.001f);
constexpr float abs_tolerance_f32(0.0001f);
/** Alpha values to test - Precommit */
const auto a_values = framework::dataset::make("alpha", {1.0f, -0.75f} );
/** Beta values to test - Precommit */
const auto beta_values = framework::dataset::make("beta", {-0.75f, 0.0f} );
/** M values to test */
const auto m_values = framework::dataset::make("M", 37);
/** M_W values to test */
const auto m_w_values = framework::dataset::make("M_W", 5);
/** M_H values to test */
const auto m_h_values = framework::dataset::make("M_H", 7);
/** N values to test */
const auto n_values = framework::dataset::make("N", 51);
/** K values to test */
const auto k_values = framework::dataset::make("K", 23);
/** Batch size values to test */
const auto b_values = framework::dataset::make("batch_size", 1, 3);
/** Activation values to test */
const auto act_values = framework::dataset::make("Activation",
{
ActivationLayerInfo(),
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 8.f, 2.f),
});
/** M0 values to test - Precommit */
const auto m0_values_precommit = framework::dataset::make("M0", { 4, 6 });
/** N0 values to test - Precommit */
const auto n0_values_precommit = framework::dataset::make("N0", { 4 });
/** K0 values to test - Precommit */
const auto k0_values_precommit = framework::dataset::make("K0", { 4 });
/** H0 values to test - Precommit */
const auto h0_values_precommit = framework::dataset::make("H0", 1, 3);
/** M0 values to test - Nightly */
const auto m0_values_nightly = framework::dataset::make("M0", 1, 8);
/** N0 values to test - Nightly */
const auto n0_values_nightly = framework::dataset::make("N0", { 2, 3, 4, 8 });
/** K0 values to test - Nightly */
const auto k0_values_nightly = framework::dataset::make("K0", { 2, 3, 4, 8 });
/** Broadcast bias from vector to matrix */
const auto broadcast_bias_values = framework::dataset::make("broadcast_bias", { false, true } );
/** Boundary handling cases for testing partial/non-partial (full) block dimensions, resulting from different combinations
* of M, M0, N and N0 values.
* M0 and N0 are kept constant, while the different test cases need to vary M and N.
*
* Eg. M = 64 and N = 33 result in a block dimension that has no partial blocks (all full blocks) in Y dimension and
* parital blocks in X dimension.
*/
const auto boundary_handling_cases = combine(combine(combine(combine(combine(combine(combine(combine(combine(
// Large k to force potential out-of-bound reads on input0
framework::dataset::make("K", 315),
// Batch size == 1 to force potential out-of-bound reads on input0
framework::dataset::make("batch_size", 1)),
framework::dataset::make("M0", 4)),
framework::dataset::make("N0", 4)),
framework::dataset::make("K0", 4)),
// Only need to test F32 as F16 shares identical boundary handling logics
framework::dataset::make("DataType", DataType::F32)),
framework::dataset::make("alpha", -0.75f )),
framework::dataset::make("beta", -0.35f )),
broadcast_bias_values),
framework::dataset::make("Activation", ActivationLayerInfo()));
/** Configuration test */
void validate_configuration(unsigned int m_value, unsigned int n_value, unsigned int k_value, unsigned int b_value, unsigned int m0_value, unsigned int n0_value, unsigned int k0_value, bool broadcast_bias, DataType data_type, const ActivationLayerInfo &act_info)
{
const unsigned int M = m_value;
const unsigned int N = n_value;
const unsigned int K = k_value;
GEMMLHSMatrixInfo lhs_info;
lhs_info.m0 = m0_value;
lhs_info.k0 = k0_value;
GEMMRHSMatrixInfo rhs_info;
rhs_info.n0 = n0_value;
rhs_info.k0 = k0_value;
GEMMKernelInfo kernel_info;
kernel_info.m = M;
kernel_info.n = N;
kernel_info.k = K;
kernel_info.broadcast_bias = broadcast_bias;
kernel_info.activation_info = act_info;
const TensorShape lhs_shape(K, M, b_value);
const TensorShape rhs_shape(N, K, b_value);
const TensorShape bias_shape(N,
broadcast_bias? 1 : M,
broadcast_bias? 1 : b_value);
const TensorShape dst_shape = compute_mm_shape(TensorInfo(lhs_shape, 1, data_type),
TensorInfo(rhs_shape, 1, data_type),
kernel_info);
// Create tensors
CLTensor lhs = create_tensor<CLTensor>(lhs_shape, data_type);
CLTensor rhs = create_tensor<CLTensor>(rhs_shape, data_type);
CLTensor bias = create_tensor<CLTensor>(bias_shape, data_type);
CLTensor dst = create_tensor<CLTensor>(dst_shape, data_type);
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
// Create and configure function
CLGEMMMatrixMultiplyNative gemm;
gemm.configure(&lhs, &rhs, &bias, &dst, 1.0f, 1.0f, lhs_info, rhs_info, kernel_info);
}
/** Zero padding test */
bool validate_zero_padding(unsigned int m_value, unsigned int n_value, unsigned int k_value, unsigned int b_value, unsigned int m0_value, unsigned int n0_value, unsigned int k0_value, bool broadcast_bias, DataType data_type, const ActivationLayerInfo &act_info)
{
const unsigned int M = m_value;
const unsigned int N = n_value;
const unsigned int K = k_value;
GEMMLHSMatrixInfo lhs_info;
lhs_info.m0 = m0_value;
lhs_info.k0 = k0_value;
GEMMRHSMatrixInfo rhs_info;
rhs_info.n0 = n0_value;
rhs_info.k0 = k0_value;
GEMMKernelInfo kernel_info;
kernel_info.m = M;
kernel_info.n = N;
kernel_info.k = K;
kernel_info.broadcast_bias = broadcast_bias;
kernel_info.activation_info = act_info;
const TensorShape lhs_shape(K, M, b_value);
const TensorShape rhs_shape(N, K, b_value);
const TensorShape bias_shape(N,
broadcast_bias? 1 : M,
broadcast_bias? 1 : b_value);
const TensorShape dst_shape = compute_mm_shape(TensorInfo(lhs_shape, 1, data_type),
TensorInfo(rhs_shape, 1, data_type),
kernel_info);
// Create tensors
CLTensor lhs = create_tensor<CLTensor>(lhs_shape, data_type);
CLTensor rhs = create_tensor<CLTensor>(rhs_shape, data_type);
CLTensor bias = create_tensor<CLTensor>(bias_shape, data_type);
CLTensor dst = create_tensor<CLTensor>(dst_shape, data_type);
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
// Create and configure function
CLGEMMMatrixMultiplyNative gemm;
gemm.configure(&lhs, &rhs, &bias, &dst, 1.0f, 1.0f, lhs_info, rhs_info, kernel_info);
// Padding can be added along rhs and bias's X dimension
return dst.info()->padding().empty() && lhs.info()->padding().empty() && bias.info()->padding().bottom == 0 && bias.info()->padding().top == 0;
}
} // namespace
TEST_SUITE(CL)
TEST_SUITE(GEMMMatrixMultiplyNative)
TEST_SUITE(Float)
TEST_SUITE(FP32)
DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, combine(combine(combine(combine(combine(combine(combine(combine(
m_values,
n_values),
k_values),
framework::dataset::make("batch_size", 1)),
m0_values_precommit),
n0_values_precommit),
k0_values_precommit),
broadcast_bias_values),
act_values),
m_value, n_value, k_value, b_value, m0_value, n0_value, k0_value, broadcast_bias, act_value)
{
validate_configuration(m_value, n_value, k_value, b_value, m0_value, n0_value, k0_value, broadcast_bias, DataType::F32, act_value);
}
/** Validate zero padding tests
*
* A series of validation tests to check that no padding is added as part of configuration for 4 different scenarios.
*
* Checks performed in order:
* - No partial blocks in both x and y dimensions
* - Partial blocks in x dimension
* - Partial blocks in y dimension
* - Partial blocks in both x and y dimensions
* - No blocks in both x and y dimensions, scalar store (N0==1)
* - Special case: partial_n0 == 5 (vstore1 should be invoked instead of vstore_partial_1)
*/
DATA_TEST_CASE(ValidateZeroPadding, framework::DatasetMode::ALL, zip(zip(zip(
framework::dataset::make("M", { 24, 64, 101, 1, 50, 256, }),
framework::dataset::make("N", { 48, 29, 16, 122, 20, 21, })),
framework::dataset::make("M0", { 4, 8, 7, 2, 1, 8, })),
framework::dataset::make("N0", { 4, 4, 16, 3, 1, 8, })),
m_value, n_value, m0_value, n0_value)
{
bool status = validate_zero_padding(m_value, n_value, 23, 1, m0_value, n0_value, 4, false, DataType::F32, ActivationLayerInfo());
ARM_COMPUTE_EXPECT(status, framework::LogLevel::ERRORS);
}
FIXTURE_DATA_TEST_CASE(RunSmallBoundaryHandlingPartialInXPartialInY, CLGEMMMatrixMultiplyNativeFixture<float>, framework::DatasetMode::ALL,
combine(combine(
framework::dataset::make("M", 3),
framework::dataset::make("N", 1)),
boundary_handling_cases))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunSmallBoundaryHandlingPartialInXFullInY, CLGEMMMatrixMultiplyNativeFixture<float>, framework::DatasetMode::ALL,
combine(combine(
framework::dataset::make("M", 64),
framework::dataset::make("N", 51)),
boundary_handling_cases))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunSmallBoundaryHandlingFullInXFullInY, CLGEMMMatrixMultiplyNativeFixture<float>, framework::DatasetMode::ALL,
combine(combine(
framework::dataset::make("M", 64),
framework::dataset::make("N", 32)),
boundary_handling_cases))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunSmallBoundaryHandlingFullInXPartialInY, CLGEMMMatrixMultiplyNativeFixture<float>, framework::DatasetMode::ALL,
combine(combine(
framework::dataset::make("M", 37),
framework::dataset::make("N", 32)),
boundary_handling_cases))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMMatrixMultiplyNativeFixture<float>, framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
m_values,
n_values),
k_values),
b_values),
m0_values_precommit),
n0_values_precommit),
k0_values_precommit),
framework::dataset::make("DataType", DataType::F32)),
a_values),
beta_values),
broadcast_bias_values),
act_values))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunLarge, CLGEMMMatrixMultiplyNativeFixture<float>, framework::DatasetMode::DISABLED,
combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
m_values,
n_values),
k_values),
b_values),
m0_values_nightly),
n0_values_nightly),
k0_values_nightly),
framework::dataset::make("DataType", DataType::F32)),
a_values),
beta_values),
broadcast_bias_values),
act_values))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunSmall3D, CLGEMMMatrixMultiplyNative3DFixture<float>, framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
m_w_values,
m_h_values),
n_values),
k_values),
b_values),
m0_values_precommit),
n0_values_precommit),
k0_values_precommit),
framework::dataset::make("DataType", DataType::F32)),
a_values),
beta_values),
act_values))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunLarge3D, CLGEMMMatrixMultiplyNative3DFixture<float>, framework::DatasetMode::DISABLED,
combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
m_w_values,
m_h_values),
n_values),
k_values),
b_values),
m0_values_nightly),
n0_values_nightly),
k0_values_nightly),
framework::dataset::make("DataType", DataType::F32)),
a_values),
beta_values),
act_values))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
TEST_SUITE_END() // FP32
TEST_SUITE_END() // Float
TEST_SUITE_END() // GEMMMatrixMulipltyNative
TEST_SUITE_END() // CL
} // namespace validation
} // namespace test
} // namespace arm_compute
|