1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
|
/*
* Copyright (c) 2018-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/kernels/CLIm2ColKernel.h"
#include "arm_compute/core/Types.h"
#include "tests/CL/CLAccessor.h"
#include "tests/CL/Helper.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Macros.h"
#include "tests/framework/datasets/Datasets.h"
#include "tests/validation/Validation.h"
#include "tests/validation/fixtures/Im2ColFixture.h"
namespace arm_compute
{
namespace test
{
namespace validation
{
TEST_SUITE(CL)
TEST_SUITE(Im2Col)
using CLIm2Col = CLSynthetizeFunction<CLIm2ColKernel>;
/** Negative tests
*
* A series of validation tests on configurations which according to the API specification
* the function should fail against.
*
* Checks performed in order:
* - Pass unsupported data type for input
* - Pass a quantized input and ask to compress the bias into the resulting matrix
* - Pass a dilation factor of 0
* - Check NHWC data layout while requesting to perform a grouped operation
* - Check NCHW grouped operation when the number of channels is not multiple of the groups
* - Pass an invalid output shape
*/
TEST_CASE(Negative, framework::DatasetMode::ALL)
{
// Unsupported data type
{
const auto input = TensorInfo(TensorShape(10U, 12U, 1U, 2U), 1, DataType::SIZET);
const auto output = TensorInfo(TensorShape(9U, 10U, 12U, 2U), 1, DataType::F32);
const auto conv_size = Size2D(3, 3);
const bool has_bias = false;
const auto status = CLIm2ColKernel::validate(&input, &output, conv_size, PadStrideInfo(), has_bias);
ARM_COMPUTE_EXPECT(bool(status) == false, framework::LogLevel::ERRORS);
}
// Passing quantized input and ask to merge the bias in the output
{
const auto input = TensorInfo(TensorShape(10U, 12U, 1U, 2U), 1, DataType::QASYMM8);
const auto output = TensorInfo(TensorShape(9U, 80U, 2U), 1, DataType::QASYMM8);
const auto conv_size = Size2D(3, 3);
const bool has_bias = true;
const auto status = CLIm2ColKernel::validate(&input, &output, conv_size, PadStrideInfo(), has_bias);
ARM_COMPUTE_EXPECT(bool(status) == false, framework::LogLevel::ERRORS);
}
// Invalid dilation
{
const auto input = TensorInfo(TensorShape(10U, 12U, 1U, 2U), 1, DataType::F32);
const auto output = TensorInfo(TensorShape(9U, 80U, 2U), 1, DataType::F32);
const auto conv_size = Size2D(3, 3);
const auto dilation = Size2D(0, 1);
const bool has_bias = false;
const auto status = CLIm2ColKernel::validate(&input, &output, conv_size, PadStrideInfo(), has_bias, dilation);
ARM_COMPUTE_EXPECT(bool(status) == false, framework::LogLevel::ERRORS);
}
// NHWC and grouping greater than 1
{
const auto input = TensorInfo(TensorShape(10U, 12U, 1U, 2U), 1, DataType::F32, DataLayout::NHWC);
const auto output = TensorInfo(TensorShape(9U, 80U, 2U), 1, DataType::F32);
const auto conv_size = Size2D(3, 3);
const auto dilation = Size2D(1, 1);
const bool has_bias = false;
const unsigned int num_groups = 2;
const auto status = CLIm2ColKernel::validate(&input, &output, conv_size, PadStrideInfo(), has_bias, dilation, num_groups);
ARM_COMPUTE_EXPECT(bool(status) == false, framework::LogLevel::ERRORS);
}
// NCWH and channels % num_groups !=0
{
const auto input = TensorInfo(TensorShape(10U, 12U, 1U, 2U), 1, DataType::F32, DataLayout::NCHW);
const auto output = TensorInfo(TensorShape(9U, 80U, 2U), 1, DataType::F32);
const auto conv_size = Size2D(3, 3);
const auto dilation = Size2D(1, 1);
const bool has_bias = false;
const unsigned int num_groups = 2;
const auto status = CLIm2ColKernel::validate(&input, &output, conv_size, PadStrideInfo(), has_bias, dilation, num_groups);
ARM_COMPUTE_EXPECT(bool(status) == false, framework::LogLevel::ERRORS);
}
// Invalid output shape
{
const auto input = TensorInfo(TensorShape(10U, 12U, 1U, 2U), 1, DataType::F32);
const auto output = TensorInfo(TensorShape(9U, 81U, 2U), 1, DataType::F32);
const auto conv_size = Size2D(3, 3);
const bool has_bias = false;
const auto status = CLIm2ColKernel::validate(&input, &output, conv_size, PadStrideInfo(), has_bias);
ARM_COMPUTE_EXPECT(bool(status) == false, framework::LogLevel::ERRORS);
}
// Kernel dimensions are too big
{
const auto input = TensorInfo(TensorShape(1U, 9U, 5U, 2U), 1, DataType::F32, DataLayout::NHWC);
const auto output = TensorInfo(TensorShape(1U, 1U, 1U, 2U), 1, DataType::F32, DataLayout::NHWC);
const auto conv_size = Size2D(9, 9);
const bool has_bias = false;
const auto status = CLIm2ColKernel::validate(&input, &output, conv_size, PadStrideInfo(), has_bias);
ARM_COMPUTE_EXPECT(bool(status) == false, framework::LogLevel::ERRORS);
}
}
template <typename T>
using CLIm2ColFixture = Im2ColValidationFixture<CLTensor, CLAccessor, CLIm2Col, T, true>;
TEST_SUITE(NHWC)
/** Test that there's no padding added to input or output as part of configure
*
* @note 2 elements processed per iteration
*
* Three tests will be run:
* - Channels are multiple of elements processed
* - Channels larger and non multiple of elements used
* - Channels smaller and not multiple of elements used
*
*/
DATA_TEST_CASE(ValidateZeroPaddingNumElemsPerIterEqual2, framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(
framework::dataset::make("InputChannel",
{
2, 9, 1,
}),
framework::dataset::make("DataType", { DataType::F32 })),
framework::dataset::make("Kernel", { Size2D(3, 4) })),
framework::dataset::make("PadStride", { PadStrideInfo(2, 1, 1, 2) })),
framework::dataset::make("QInfo", { QuantizationInfo() })),
framework::dataset::make("DataLayout", { DataLayout::NHWC })),
input_channel, data_type, conv_size, pad_stride_info, qinfo, data_layout)
{
TensorShape input_shape(input_channel, 10U, 30U, 3U);
const bool has_bias = false;
const auto input_info = TensorInfo(input_shape, 1, data_type, data_layout);
const auto output_shape = compute_im2col_conv_shape(&input_info, conv_size, pad_stride_info, has_bias, Size2D(1U, 1U), true);
CLTensor input = create_tensor<CLTensor>(input_shape, data_type, 1, qinfo, data_layout);
CLTensor output = create_tensor<CLTensor>(output_shape, data_type, 1, qinfo, data_layout);
CLIm2ColKernel im2col;
im2col.configure(&input, &output, conv_size, pad_stride_info, has_bias);
// Ensure there're no paddings added at all
const bool no_padding = input.info()->padding().empty() && output.info()->padding().empty();
ARM_COMPUTE_EXPECT(no_padding, framework::LogLevel::ERRORS);
}
/** Test special kernel used for NHWC for 3x3 kernels
*
* @note 2 elements processed per iteration
*
* Three tests will be run:
* - Channels are multiple of elements processed
* - Channels larger and non multiple of elements used
* - Channels smaller and not multiple of elements used
*
* Kernel tested im2col3x3_nhwc
*/
FIXTURE_DATA_TEST_CASE(W3x3,
CLIm2ColFixture<float>,
framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(
framework::dataset::make("InputShape",
{
TensorShape(2U, 5U, 7U, 2U), TensorShape(3U, 4U, 6U, 2U), TensorShape(1U, 5U, 3U, 2U),
}),
framework::dataset::make("DataType", DataType::F32)),
framework::dataset::make("Kernel", Size2D(3, 3))),
framework::dataset::make("PadStride", { PadStrideInfo(1, 2, 1, 2), PadStrideInfo(1, 1, 0, 0) })),
framework::dataset::make("QInfo", QuantizationInfo())),
framework::dataset::make("DataLayout", DataLayout::NHWC)),
framework::dataset::make("Groups", 1)))
{
// Validate output
validate(CLAccessor(_target), _reference);
}
/** Test special kernel used for NHWC for 9x9 kernels
*
* @note 2 elements processed per iteration
*
* Three tests will be run:
* - Channels are multiple of elements processed
* - Channels larger and non multiple of elements used
* - Channels smaller and not multiple of elements used
*
* Kernel tested im2col9x9_nhwc
*/
FIXTURE_DATA_TEST_CASE(W9x9,
CLIm2ColFixture<float>,
framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(
framework::dataset::make("InputShape",
{
TensorShape(2U, 13U, 15U, 2U), TensorShape(3U, 15U, 12U, 2U), TensorShape(1U, 13U, 22U, 2U),
}),
framework::dataset::make("DataType", DataType::F32)),
framework::dataset::make("Kernel", Size2D(9, 9))),
framework::dataset::make("PadStride", { PadStrideInfo(2, 2, 1, 2), PadStrideInfo(1, 1, 0, 0) })),
framework::dataset::make("QInfo", QuantizationInfo())),
framework::dataset::make("DataLayout", DataLayout::NHWC)),
framework::dataset::make("Groups", 1)))
{
// Validate output
validate(CLAccessor(_target), _reference);
}
/** Test generic kernel used for NHWC
*
* @note 2 elements processed per iteration
*
* Three tests will be run:
* - Channels are multiple of elements processed
* - Channels larger and non multiple of elements used
* - Channels smaller and not multiple of elements used
*
* Kernel tested im2col_generic_nhwc
*/
FIXTURE_DATA_TEST_CASE(Generic,
CLIm2ColFixture<float>,
framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(
framework::dataset::make("InputShape",
{
TensorShape(4U, 13U, 15U, 2U), TensorShape(7U, 15U, 12U, 1U), TensorShape(1U, 5U, 3U, 1U),
}),
framework::dataset::make("DataType", DataType::F32)),
framework::dataset::make("Kernel", Size2D(5, 3))),
framework::dataset::make("PadStride", { PadStrideInfo(2, 2, 1, 2), PadStrideInfo(1, 1, 0, 0) })),
framework::dataset::make("QInfo", QuantizationInfo())),
framework::dataset::make("DataLayout", DataLayout::NHWC)),
framework::dataset::make("Groups", 1)))
{
// Validate output
validate(CLAccessor(_target), _reference);
}
TEST_SUITE_END() // NHWC
TEST_SUITE(NCHW)
/** Test special kernel used for NCHW for 1x1 kernels with stride 1 and no padding
*
* @note 4 elements processed per iteration
*
* Three tests will be run:
* - Channels are multiple of elements processed
* - Channels larger and non multiple of elements used
* - Channels smaller and not multiple of elements used
*
* Kernel tested im2col1x1_stridex1_nchw
*/
FIXTURE_DATA_TEST_CASE(W1x1_Stride1_NoPad,
CLIm2ColFixture<float>,
framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(
framework::dataset::make("InputShape", { TensorShape(4U, 4U, 3U, 2U), TensorShape(5U, 4U, 3U, 2U), TensorShape(3U, 4U, 3U, 2U) }),
framework::dataset::make("DataType", DataType::F32)),
framework::dataset::make("Kernel", Size2D(1, 1))),
framework::dataset::make("PadStride", PadStrideInfo(1, 1, 0, 0))),
framework::dataset::make("QInfo", QuantizationInfo())),
framework::dataset::make("DataLayout", DataLayout::NCHW)),
framework::dataset::make("Groups", 1)))
{
// Validate output
validate(CLAccessor(_target), _reference);
}
/** Test special kernel used for NCHW for 3x3 kernels
*
* @note 1 elements processed per iteration
*
* Executed single test as padding is required.
*
* Kernel tested im2col3x3_nchw
*/
FIXTURE_DATA_TEST_CASE(W3x3,
CLIm2ColFixture<float>,
framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(
framework::dataset::make("InputShape", TensorShape(4U, 4U, 3U, 2U)),
framework::dataset::make("DataType", DataType::F32)),
framework::dataset::make("Kernel", Size2D(3, 3))),
framework::dataset::make("PadStride", PadStrideInfo(1, 2, 1, 2))),
framework::dataset::make("QInfo", QuantizationInfo())),
framework::dataset::make("DataLayout", DataLayout::NCHW)),
framework::dataset::make("Groups", { 1, 3 })))
{
// Validate output
validate(CLAccessor(_target), _reference);
}
/** Test special kernel used for NCHW for 5x5 kernels
*
* @note 1 elements processed per iteration
*
* Executed single test as padding is required.
*
* Kernel tested im2col5x5_nchw
*/
FIXTURE_DATA_TEST_CASE(W5x5,
CLIm2ColFixture<float>,
framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(
framework::dataset::make("InputShape", TensorShape(7U, 4U, 3U, 2U)),
framework::dataset::make("DataType", DataType::F32)),
framework::dataset::make("Kernel", Size2D(5, 5))),
framework::dataset::make("PadStride", PadStrideInfo(2, 1, 2, 1))),
framework::dataset::make("QInfo", QuantizationInfo())),
framework::dataset::make("DataLayout", DataLayout::NCHW)),
framework::dataset::make("Groups", { 1, 3 })))
{
// Validate output
validate(CLAccessor(_target), _reference);
}
/** Test special kernel used for NCHW for 11x11 kernels when no padding present
*
* @note 1 elements processed per iteration
*
* Two tests will be run:
* - Without padding requirements
* - With padding requirements
*
* Kernel tested im2col11x11_padx0_pady0_nchw
*/
FIXTURE_DATA_TEST_CASE(W11x11_NoPad,
CLIm2ColFixture<float>,
framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(
framework::dataset::make("InputShape", { TensorShape(11U, 11U, 2U, 2U), TensorShape(14U, 13U, 1U, 2U) }),
framework::dataset::make("DataType", DataType::F32)),
framework::dataset::make("Kernel", Size2D(11, 11))),
framework::dataset::make("PadStride", PadStrideInfo(1, 1, 0, 0))),
framework::dataset::make("QInfo", QuantizationInfo())),
framework::dataset::make("DataLayout", DataLayout::NCHW)),
framework::dataset::make("Groups", 1)))
{
// Validate output
validate(CLAccessor(_target), _reference);
}
/** Test special kernel used for NCHW for kernels which do not fall in the categories above and have no padding present
*
* @note 1 elements processed per iteration
*
* Executed single test as padding is required.
*
* Kernel tested im2col_generic_padx0_pady0_nchw
*/
FIXTURE_DATA_TEST_CASE(GenericZeroPad,
CLIm2ColFixture<float>,
framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(
framework::dataset::make("InputShape", TensorShape(13U, 11U, 2U, 2U)),
framework::dataset::make("DataType", DataType::F32)),
framework::dataset::make("Kernel", Size2D(3, 2))),
framework::dataset::make("PadStride", PadStrideInfo(2, 1, 0, 0))),
framework::dataset::make("QInfo", QuantizationInfo())),
framework::dataset::make("DataLayout", DataLayout::NCHW)),
framework::dataset::make("Groups", { 1, 2 })))
{
// Validate output
validate(CLAccessor(_target), _reference);
}
TEST_SUITE_END() // NCHW
/** Generic NCHW/NHWC kernel
*
* @note 1 elements processed per iteration
*
* Padding is not needed thus executed sample tests with different kernels sizes
* and stride/padding information
*
* Kernel tested im2col_generic_(nchw|nhwc)
*/
FIXTURE_DATA_TEST_CASE(Generic,
CLIm2ColFixture<float>,
framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(
framework::dataset::make("InputShape", TensorShape(13U, 11U, 5U, 2U)),
framework::dataset::make("DataType", DataType::F32)),
framework::dataset::make("Kernel", { Size2D(3, 2), Size2D(3, 5) })),
framework::dataset::make("PadStride", PadStrideInfo(2, 1, 2, 1))),
framework::dataset::make("QInfo", QuantizationInfo())),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
framework::dataset::make("Groups", 1)))
{
// Validate output
validate(CLAccessor(_target), _reference);
}
/** Tests to check that quantized padding value is set correctly
*
* Kernels tested:
* - im2col_generic_nhwc
* - im2col_generic_nchw
* - im2col5x5_nchw
* - im2col3x3_nhwc
* - im2col3x3_nchw
* - im2col9x9_nhwc
*/
FIXTURE_DATA_TEST_CASE(Quantized,
CLIm2ColFixture<uint8_t>,
framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(
framework::dataset::make("InputShape", TensorShape(13U, 11U, 11U, 2U)),
framework::dataset::make("DataType", DataType::QASYMM8)),
framework::dataset::make("Kernel", { Size2D(1, 1), Size2D(3, 3), Size2D(5, 5), Size2D(3, 5), Size2D(9, 9) })),
framework::dataset::make("PadStride", { PadStrideInfo(1, 2, 1, 1) })),
framework::dataset::make("QInfo", QuantizationInfo(0.5f, 10))),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
framework::dataset::make("Groups", 1)))
{
// Validate output
validate(CLAccessor(_target), _reference);
}
/** Tests to check that half-precision execution
*
* Kernels tested:
* - im2col_generic_nhwc
* - im2col_generic_nchw
* - im2col5x5_nchw
* - im2col3x3_nhwc
* - im2col3x3_nchw
* - im2col9x9_nhwc
*/
FIXTURE_DATA_TEST_CASE(FP16,
CLIm2ColFixture<half>,
framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(
framework::dataset::make("InputShape", TensorShape(13U, 11U, 11U, 2U)),
framework::dataset::make("DataType", DataType::F16)),
framework::dataset::make("Kernel", { Size2D(1, 1), Size2D(3, 3), Size2D(5, 5), Size2D(3, 5), Size2D(9, 9) })),
framework::dataset::make("PadStride", { PadStrideInfo(1, 2, 1, 1) })),
framework::dataset::make("QInfo", QuantizationInfo())),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
framework::dataset::make("Groups", 1)))
{
// Validate output
validate(CLAccessor(_target), _reference);
}
TEST_SUITE_END() // Im2Col
TEST_SUITE_END() // CL
} // namespace validation
} // namespace test
} // namespace arm_compute
|