1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
/*
* Copyright (c) 2018-2019 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/CLTensorAllocator.h"
#include "arm_compute/core/utils/misc/MMappedFile.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "arm_compute/runtime/CL/functions/CLActivationLayer.h"
#include "arm_compute/runtime/MemoryGroup.h"
#include "tests/CL/CLAccessor.h"
#include "tests/Globals.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Macros.h"
#include "tests/validation/Validation.h"
#include "tests/validation/reference/ActivationLayer.h"
#include <memory>
#include <random>
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace
{
cl_mem import_malloc_memory_helper(void *ptr, size_t size)
{
const cl_import_properties_arm import_properties[] =
{
CL_IMPORT_TYPE_ARM,
CL_IMPORT_TYPE_HOST_ARM,
0
};
cl_int err = CL_SUCCESS;
cl_mem buf = clImportMemoryARM(CLKernelLibrary::get().context().get(), CL_MEM_READ_WRITE, import_properties, ptr, size, &err);
ARM_COMPUTE_ASSERT(err == CL_SUCCESS);
return buf;
}
} // namespace
TEST_SUITE(CL)
TEST_SUITE(UNIT)
TEST_SUITE(TensorAllocator)
/** Validates import memory interface when importing cl buffer objects */
TEST_CASE(ImportMemoryBuffer, framework::DatasetMode::ALL)
{
// Init tensor info
const TensorInfo info(TensorShape(24U, 16U, 3U), 1, DataType::F32);
// Allocate memory buffer
const size_t total_size = info.total_size();
auto buf = cl::Buffer(CLScheduler::get().context(), CL_MEM_READ_WRITE, total_size);
// Negative case : Import nullptr
CLTensor t1;
t1.allocator()->init(info);
ARM_COMPUTE_EXPECT(!bool(t1.allocator()->import_memory(cl::Buffer())), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(t1.info()->is_resizable(), framework::LogLevel::ERRORS);
// Negative case : Import memory to a tensor that is memory managed
CLTensor t2;
MemoryGroup mg;
t2.allocator()->set_associated_memory_group(&mg);
ARM_COMPUTE_EXPECT(!bool(t2.allocator()->import_memory(buf)), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(t2.info()->is_resizable(), framework::LogLevel::ERRORS);
// Negative case : Invalid buffer size
CLTensor t3;
const TensorInfo info_neg(TensorShape(32U, 16U, 3U), 1, DataType::F32);
t3.allocator()->init(info_neg);
ARM_COMPUTE_EXPECT(!bool(t3.allocator()->import_memory(buf)), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(t3.info()->is_resizable(), framework::LogLevel::ERRORS);
// Positive case : Set raw pointer
CLTensor t4;
t4.allocator()->init(info);
ARM_COMPUTE_EXPECT(bool(t4.allocator()->import_memory(buf)), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!t4.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(t4.cl_buffer().get() == buf.get(), framework::LogLevel::ERRORS);
t4.allocator()->free();
ARM_COMPUTE_EXPECT(t4.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(t4.cl_buffer().get() != buf.get(), framework::LogLevel::ERRORS);
}
/** Validates import memory interface when importing malloced memory */
TEST_CASE(ImportMemoryMalloc, framework::DatasetMode::ALL)
{
// Check if import extension is supported
if(!device_supports_extension(CLKernelLibrary::get().get_device(), "cl_arm_import_memory_host"))
{
return;
}
else
{
const ActivationLayerInfo act_info(ActivationLayerInfo::ActivationFunction::RELU);
const TensorShape shape = TensorShape(24U, 16U, 3U);
const DataType data_type = DataType::F32;
// Create tensor
const TensorInfo info(shape, 1, data_type);
CLTensor tensor;
tensor.allocator()->init(info);
// Create and configure activation function
CLActivationLayer act_func;
act_func.configure(&tensor, nullptr, act_info);
// Allocate and import tensor
const size_t total_size_in_elems = tensor.info()->tensor_shape().total_size();
const size_t total_size_in_bytes = tensor.info()->total_size();
const size_t alignment = CLKernelLibrary::get().get_device().getInfo<CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE>();
size_t space = total_size_in_bytes + alignment;
auto raw_data = support::cpp14::make_unique<uint8_t[]>(space);
void *aligned_ptr = raw_data.get();
support::cpp11::align(alignment, total_size_in_bytes, aligned_ptr, space);
cl::Buffer wrapped_buffer(import_malloc_memory_helper(aligned_ptr, total_size_in_bytes));
ARM_COMPUTE_EXPECT(bool(tensor.allocator()->import_memory(wrapped_buffer)), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!tensor.info()->is_resizable(), framework::LogLevel::ERRORS);
// Fill tensor
std::uniform_real_distribution<float> distribution(-5.f, 5.f);
std::mt19937 gen(library->seed());
auto *typed_ptr = reinterpret_cast<float *>(aligned_ptr);
for(unsigned int i = 0; i < total_size_in_elems; ++i)
{
typed_ptr[i] = distribution(gen);
}
// Execute function and sync
act_func.run();
CLScheduler::get().sync();
// Validate result by checking that the input has no negative values
for(unsigned int i = 0; i < total_size_in_elems; ++i)
{
ARM_COMPUTE_EXPECT(typed_ptr[i] >= 0, framework::LogLevel::ERRORS);
}
// Release resources
tensor.allocator()->free();
ARM_COMPUTE_EXPECT(tensor.info()->is_resizable(), framework::LogLevel::ERRORS);
}
}
#if !defined(BARE_METAL)
/** Validates import memory interface when importing memory mapped objects */
TEST_CASE(ImportMemoryMappedFile, framework::DatasetMode::ALL)
{
// Check if import extension is supported
if(!device_supports_extension(CLKernelLibrary::get().get_device(), "cl_arm_import_memory_host"))
{
return;
}
else
{
const ActivationLayerInfo act_info(ActivationLayerInfo::ActivationFunction::RELU);
const TensorShape shape = TensorShape(24U, 16U, 3U);
const DataType data_type = DataType::F32;
// Create tensor
const TensorInfo info(shape, 1, data_type);
CLTensor tensor;
tensor.allocator()->init(info);
// Create and configure activation function
CLActivationLayer act_func;
act_func.configure(&tensor, nullptr, act_info);
// Get number of elements
const size_t total_size_in_elems = tensor.info()->tensor_shape().total_size();
const size_t total_size_in_bytes = tensor.info()->total_size();
// Create file
std::ofstream output_file("test_mmap_import.bin", std::ios::binary | std::ios::out);
output_file.seekp(total_size_in_bytes - 1);
output_file.write("", 1);
output_file.close();
// Map file
utils::mmap_io::MMappedFile mmapped_file("test_mmap_import.bin", 0 /** Whole file */, 0);
ARM_COMPUTE_EXPECT(mmapped_file.is_mapped(), framework::LogLevel::ERRORS);
unsigned char *data = mmapped_file.data();
cl::Buffer wrapped_buffer(import_malloc_memory_helper(data, total_size_in_bytes));
ARM_COMPUTE_EXPECT(bool(tensor.allocator()->import_memory(wrapped_buffer)), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!tensor.info()->is_resizable(), framework::LogLevel::ERRORS);
// Fill tensor
std::uniform_real_distribution<float> distribution(-5.f, 5.f);
std::mt19937 gen(library->seed());
auto *typed_ptr = reinterpret_cast<float *>(data);
for(unsigned int i = 0; i < total_size_in_elems; ++i)
{
typed_ptr[i] = distribution(gen);
}
// Execute function and sync
act_func.run();
CLScheduler::get().sync();
// Validate result by checking that the input has no negative values
for(unsigned int i = 0; i < total_size_in_elems; ++i)
{
ARM_COMPUTE_EXPECT(typed_ptr[i] >= 0, framework::LogLevel::ERRORS);
}
// Release resources
tensor.allocator()->free();
ARM_COMPUTE_EXPECT(tensor.info()->is_resizable(), framework::LogLevel::ERRORS);
}
}
#endif // !defined(BARE_METAL)
/** Validates symmetric per channel quantization */
TEST_CASE(Symm8PerChannelQuantizationInfo, framework::DatasetMode::ALL)
{
// Create tensor
CLTensor tensor;
const std::vector<float> scale = { 0.25f, 1.4f, 3.2f, 2.3f, 4.7f };
const TensorInfo info(TensorShape(32U, 16U), 1, DataType::QSYMM8_PER_CHANNEL, QuantizationInfo(scale));
tensor.allocator()->init(info);
// Check quantization information
ARM_COMPUTE_EXPECT(!tensor.info()->quantization_info().empty(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!tensor.info()->quantization_info().scale().empty(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(tensor.info()->quantization_info().scale().size() == scale.size(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(tensor.info()->quantization_info().offset().empty(), framework::LogLevel::ERRORS);
CLQuantization quantization = tensor.quantization();
ARM_COMPUTE_ASSERT(quantization.scale != nullptr);
ARM_COMPUTE_ASSERT(quantization.offset != nullptr);
// Check OpenCL quantization arrays before allocating
ARM_COMPUTE_EXPECT(quantization.scale->max_num_values() == 0, framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(quantization.offset->max_num_values() == 0, framework::LogLevel::ERRORS);
// Check OpenCL quantization arrays after allocating
tensor.allocator()->allocate();
ARM_COMPUTE_EXPECT(quantization.scale->max_num_values() == scale.size(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(quantization.offset->max_num_values() == 0, framework::LogLevel::ERRORS);
// Validate that the scale values are the same
auto cl_scale_buffer = quantization.scale->cl_buffer();
void *mapped_ptr = CLScheduler::get().queue().enqueueMapBuffer(cl_scale_buffer, CL_TRUE, CL_MAP_READ, 0, scale.size());
auto cl_scale_ptr = static_cast<float *>(mapped_ptr);
for(unsigned int i = 0; i < scale.size(); ++i)
{
ARM_COMPUTE_EXPECT(cl_scale_ptr[i] == scale[i], framework::LogLevel::ERRORS);
}
CLScheduler::get().queue().enqueueUnmapMemObject(cl_scale_buffer, mapped_ptr);
}
TEST_SUITE_END() // TensorAllocator
TEST_SUITE_END() // UNIT
TEST_SUITE_END() // CL
} // namespace validation
} // namespace test
} // namespace arm_compute
|