1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_TEST_VALIDATION_HELPERS_H
#define ARM_COMPUTE_TEST_VALIDATION_HELPERS_H
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "support/Half.h"
#include "tests/Globals.h"
#include "tests/SimpleTensor.h"
#include <random>
#include <type_traits>
#include <utility>
namespace arm_compute
{
namespace test
{
namespace validation
{
template <typename T>
struct is_floating_point : public std::is_floating_point<T>
{
};
template <>
struct is_floating_point<half> : public std::true_type
{
};
/** Helper function to get the testing range for each activation layer.
*
* @param[in] activation Activation function to test.
* @param[in] data_type Data type.
*
* @return A pair containing the lower upper testing bounds for a given function.
*/
template <typename T>
std::pair<T, T> get_activation_layer_test_bounds(ActivationLayerInfo::ActivationFunction activation, DataType data_type)
{
std::pair<T, T> bounds;
switch(data_type)
{
case DataType::F16:
{
using namespace half_float::literal;
switch(activation)
{
case ActivationLayerInfo::ActivationFunction::TANH:
case ActivationLayerInfo::ActivationFunction::SQUARE:
case ActivationLayerInfo::ActivationFunction::LOGISTIC:
case ActivationLayerInfo::ActivationFunction::SOFT_RELU:
// Reduce range as exponent overflows
bounds = std::make_pair(-2._h, 2._h);
break;
case ActivationLayerInfo::ActivationFunction::SQRT:
// Reduce range as sqrt should take a non-negative number
bounds = std::make_pair(0._h, 128._h);
break;
default:
bounds = std::make_pair(-255._h, 255._h);
break;
}
break;
}
case DataType::F32:
switch(activation)
{
case ActivationLayerInfo::ActivationFunction::SOFT_RELU:
// Reduce range as exponent overflows
bounds = std::make_pair(-40.f, 40.f);
break;
case ActivationLayerInfo::ActivationFunction::SQRT:
// Reduce range as sqrt should take a non-negative number
bounds = std::make_pair(0.f, 255.f);
break;
default:
bounds = std::make_pair(-255.f, 255.f);
break;
}
break;
default:
ARM_COMPUTE_ERROR("Unsupported data type");
}
return bounds;
}
/** Fill mask with the corresponding given pattern.
*
* @param[in,out] mask Mask to be filled according to pattern
* @param[in] cols Columns (width) of mask
* @param[in] rows Rows (height) of mask
* @param[in] pattern Pattern to fill the mask according to
*/
void fill_mask_from_pattern(uint8_t *mask, int cols, int rows, MatrixPattern pattern);
/** Calculate output tensor shape give a vector of input tensor to concatenate
*
* @param[in] input_shapes Shapes of the tensors to concatenate across depth.
*
* @return The shape of output concatenated tensor.
*/
TensorShape calculate_depth_concatenate_shape(const std::vector<TensorShape> &input_shapes);
/** Calculate output tensor shape for the concatenate operation along a given axis
*
* @param[in] input_shapes Shapes of the tensors to concatenate across width.
* @param[in] axis Axis to use for the concatenate operation
*
* @return The shape of output concatenated tensor.
*/
TensorShape calculate_concatenate_shape(const std::vector<TensorShape> &input_shapes, size_t axis);
/** Parameters of Harris Corners algorithm. */
struct HarrisCornersParameters
{
float threshold{ 0.f }; /**< Threshold */
float sensitivity{ 0.f }; /**< Sensitivity */
float min_dist{ 0.f }; /**< Minimum distance */
uint8_t constant_border_value{ 0 }; /**< Border value */
};
/** Generate parameters for Harris Corners algorithm. */
HarrisCornersParameters harris_corners_parameters();
/** Parameters of Canny edge algorithm. */
struct CannyEdgeParameters
{
int32_t upper_thresh{ 255 };
int32_t lower_thresh{ 0 };
uint8_t constant_border_value{ 0 };
};
/** Generate parameters for Canny edge algorithm. */
CannyEdgeParameters canny_edge_parameters();
/** Helper function to fill the Lut random by a ILutAccessor.
*
* @param[in,out] table Accessor at the Lut.
*
*/
template <typename T>
void fill_lookuptable(T &&table)
{
std::mt19937 generator(library->seed());
std::uniform_int_distribution<typename T::value_type> distribution(std::numeric_limits<typename T::value_type>::min(), std::numeric_limits<typename T::value_type>::max());
for(int i = std::numeric_limits<typename T::value_type>::min(); i <= std::numeric_limits<typename T::value_type>::max(); i++)
{
table[i] = distribution(generator);
}
}
/** Convert an asymmetric quantized simple tensor into float using tensor quantization information.
*
* @param[in] src Quantized tensor.
*
* @return Float tensor.
*/
template <typename T>
SimpleTensor<float> convert_from_asymmetric(const SimpleTensor<T> &src);
/** Convert float simple tensor into quantized using specified quantization information.
*
* @param[in] src Float tensor.
* @param[in] quantization_info Quantification information.
*
* @return Quantized tensor.
*/
template <typename T>
SimpleTensor<T> convert_to_asymmetric(const SimpleTensor<float> &src, const QuantizationInfo &quantization_info);
/** Convert quantized simple tensor into float using tensor quantization information.
*
* @param[in] src Quantized tensor.
*
* @return Float tensor.
*/
template <typename T>
SimpleTensor<float> convert_from_symmetric(const SimpleTensor<T> &src);
/** Convert float simple tensor into quantized using specified quantization information.
*
* @param[in] src Float tensor.
* @param[in] quantization_info Quantification information.
*
* @return Quantized tensor.
*/
template <typename T>
SimpleTensor<T> convert_to_symmetric(const SimpleTensor<float> &src, const QuantizationInfo &quantization_info);
/** Matrix multiply between 2 float simple tensors
*
* @param[in] a Input tensor A
* @param[in] b Input tensor B
* @param[out] out Output tensor
*
*/
template <typename T>
void matrix_multiply(const SimpleTensor<T> &a, const SimpleTensor<T> &b, SimpleTensor<T> &out);
/** Transpose matrix
*
* @param[in] in Input tensor
* @param[out] out Output tensor
*
*/
template <typename T>
void transpose_matrix(const SimpleTensor<T> &in, SimpleTensor<T> &out);
/** Get a 2D tile from a tensor
*
* @note In case of out-of-bound reads, the tile will be filled with zeros
*
* @param[in] in Input tensor
* @param[out] tile Tile
* @param[in] coord Coordinates
*/
template <typename T>
void get_tile(const SimpleTensor<T> &in, SimpleTensor<T> &tile, const Coordinates &coord);
/** Fill with zeros the input tensor in the area defined by anchor and shape
*
* @param[in] in Input tensor to fill with zeros
* @param[out] anchor Starting point of the zeros area
* @param[in] shape Ending point of the zeros area
*/
template <typename T>
void zeros(SimpleTensor<T> &in, const Coordinates &anchor, const TensorShape &shape);
/** Helper function to compute quantized min and max bounds
*
* @param[in] quant_info Quantization info to be used for conversion
* @param[in] min Floating point minimum value to be quantized
* @param[in] max Floating point maximum value to be quantized
*/
std::pair<int, int> get_quantized_bounds(const QuantizationInfo &quant_info, float min, float max);
/** Helper function to compute asymmetric quantized signed min and max bounds
*
* @param[in] quant_info Quantization info to be used for conversion
* @param[in] min Floating point minimum value to be quantized
* @param[in] max Floating point maximum value to be quantized
*/
std::pair<int, int> get_quantized_qasymm8_signed_bounds(const QuantizationInfo &quant_info, float min, float max);
/** Helper function to compute symmetric quantized min and max bounds
*
* @param[in] quant_info Quantization info to be used for conversion
* @param[in] min Floating point minimum value to be quantized
* @param[in] max Floating point maximum value to be quantized
* @param[in] channel_id Channel id for per channel quantization info.
*/
std::pair<int, int> get_symm_quantized_per_channel_bounds(const QuantizationInfo &quant_info, float min, float max, size_t channel_id = 0);
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* ARM_COMPUTE_TEST_VALIDATION_HELPERS_H */
|