1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_TEST_CONVOLUTION_FIXTURE
#define ARM_COMPUTE_TEST_CONVOLUTION_FIXTURE
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/reference/Convolution.h"
#include <random>
namespace arm_compute
{
namespace test
{
namespace validation
{
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class ConvolutionValidationFixture : public framework::Fixture
{
protected:
template <typename...>
void setup(TensorShape shape, DataType output_data_type, BorderMode border_mode, const unsigned int width, const unsigned int height, const bool is_separable = false)
{
std::mt19937 gen(library->seed());
std::uniform_int_distribution<uint8_t> distribution(0, 255);
std::uniform_int_distribution<uint8_t> scale_distribution(1, 255);
const uint8_t constant_border_value = distribution(gen);
// Generate random scale value between 1 and 255.
const uint32_t scale = scale_distribution(gen);
ARM_COMPUTE_ERROR_ON(3 != width && 5 != width && 7 != width && 9 != width);
ARM_COMPUTE_ERROR_ON(3 != height && 5 != height && 7 != height && 9 != height);
std::vector<int16_t> conv(width * height);
_width = width;
_height = height;
if(is_separable)
{
init_separable_conv(conv.data(), width, height, library->seed());
}
else
{
init_conv(conv.data(), width, height, library->seed());
}
_target = compute_target(shape, output_data_type, conv.data(), scale, border_mode, constant_border_value);
_reference = compute_reference(shape, output_data_type, conv.data(), scale, border_mode, constant_border_value);
}
template <typename U>
void fill(U &&tensor, int i)
{
library->fill_tensor_uniform(tensor, i);
}
SimpleTensor<T> compute_reference(const TensorShape &shape, DataType output_data_type, const int16_t *conv, uint32_t scale, BorderMode border_mode, uint8_t constant_border_value)
{
// Create reference
SimpleTensor<uint8_t> src{ shape, DataType::U8 };
// Fill reference
fill(src, 0);
// Compute reference
return reference::convolution<T>(src, output_data_type, conv, scale, border_mode, constant_border_value, _width, _height);
}
virtual TensorType compute_target(const TensorShape &shape, DataType output_data_type, const int16_t *conv, uint32_t scale, BorderMode border_mode, uint8_t constant_border_value) = 0;
BorderMode _border_mode{};
TensorType _target{};
SimpleTensor<T> _reference{};
unsigned int _width{};
unsigned int _height{};
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class ConvolutionSquareValidationFixture : public ConvolutionValidationFixture<TensorType, AccessorType, FunctionType, T>
{
public:
template <typename...>
void setup(TensorShape shape, DataType output_data_type, BorderMode border_mode, const unsigned int width)
{
ConvolutionValidationFixture<TensorType, AccessorType, FunctionType, T>::setup(shape, output_data_type, border_mode, width, width);
}
protected:
TensorType compute_target(const TensorShape &shape, DataType output_data_type, const int16_t *conv, uint32_t scale, BorderMode border_mode, uint8_t constant_border_value)
{
// Create tensors
TensorType src = create_tensor<TensorType>(shape, DataType::U8);
TensorType dst = create_tensor<TensorType>(shape, output_data_type);
// Create and configure function
FunctionType convolution;
convolution.configure(&src, &dst, conv, scale, border_mode, constant_border_value);
ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
// Allocate tensors
src.allocator()->allocate();
dst.allocator()->allocate();
ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
// Fill tensors
this->fill(AccessorType(src), 0);
this->fill(AccessorType(dst), 1);
// Compute function
convolution.run();
return dst;
}
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class ConvolutionSeparableValidationFixture : public ConvolutionValidationFixture<TensorType, AccessorType, FunctionType, T>
{
public:
template <typename...>
void setup(TensorShape shape, DataType output_data_type, BorderMode border_mode, const unsigned int width)
{
ConvolutionValidationFixture<TensorType, AccessorType, FunctionType, T>::setup(shape, output_data_type, border_mode, width, width, true);
}
protected:
TensorType compute_target(const TensorShape &shape, DataType output_data_type, const int16_t *conv, uint32_t scale, BorderMode border_mode, uint8_t constant_border_value)
{
// Create tensors
TensorType src = create_tensor<TensorType>(shape, DataType::U8);
TensorType dst = create_tensor<TensorType>(shape, output_data_type);
// Create and configure function
FunctionType convolution;
convolution.configure(&src, &dst, conv, scale, border_mode, constant_border_value);
ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
// Allocate tensors
src.allocator()->allocate();
dst.allocator()->allocate();
ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
// Fill tensors
this->fill(AccessorType(src), 0);
this->fill(AccessorType(dst), 1);
// Compute function
convolution.run();
return dst;
}
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class ConvolutionRectangleValidationFixture : public ConvolutionValidationFixture<TensorType, AccessorType, FunctionType, T>
{
public:
template <typename...>
void setup(TensorShape shape, DataType output_data_type, BorderMode border_mode, const unsigned int width, const unsigned int height)
{
ConvolutionValidationFixture<TensorType, AccessorType, FunctionType, T>::setup(shape, output_data_type, border_mode, width, height);
}
protected:
TensorType compute_target(const TensorShape &shape, DataType output_data_type, const int16_t *conv, uint32_t scale, BorderMode border_mode, uint8_t constant_border_value)
{
// Create tensors
TensorType src = create_tensor<TensorType>(shape, DataType::U8);
TensorType dst = create_tensor<TensorType>(shape, output_data_type);
// Create and configure function
FunctionType convolution;
convolution.configure(&src, &dst, conv, this->_width, this->_height, scale, border_mode, constant_border_value);
ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
// Allocate tensors
src.allocator()->allocate();
dst.allocator()->allocate();
ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
// Fill tensors
this->fill(AccessorType(src), 0);
this->fill(AccessorType(dst), 1);
// Compute function
convolution.run();
return dst;
}
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* ARM_COMPUTE_TEST_CONVOLUTION_FIXTURE */
|