1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE
#define ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/ActivationLayer.h"
#include "tests/validation/reference/ConvolutionLayer.h"
#include "tests/validation/reference/Permute.h"
#include "tests/validation/reference/Utils.h"
#include <random>
namespace arm_compute
{
class NEConvolutionLayer;
namespace test
{
namespace validation
{
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TW>
class ConvolutionValidationGenericFixture : public framework::Fixture
{
public:
using TBias = typename std::conditional < std::is_same<typename std::decay<T>::type, uint8_t>::value
|| std::is_same<typename std::decay<T>::type, int8_t>::value,
int32_t, T >::type;
public:
template <typename...>
void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights,
DataType data_type, DataType weights_data_type, DataLayout data_layout, QuantizationInfo quantization_info, QuantizationInfo weight_quantization_info, ActivationLayerInfo act_info)
{
_data_type = data_type;
_weights_data_type = weights_data_type;
_is_quantized = is_data_type_quantized_asymmetric(data_type);
_is_bfloat16 = data_type == DataType::BFLOAT16;
_bias_data_type = _is_quantized ? DataType::S32 : (_is_bfloat16 ? DataType::F32 : data_type);
_output_data_type = _is_bfloat16 ? DataType::F32 : data_type;
_quantization_info = quantization_info;
_weight_quantization_info = weight_quantization_info;
_data_layout = data_layout;
_target = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, reshape_weights, dilation, act_info);
_reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, dilation, act_info);
}
protected:
void regularize_values(void *values, size_t size)
{
float *fvalues = static_cast<float *>(values);
for(size_t i = 0; i < size; ++i)
{
fvalues[i] = float(bfloat16(fvalues[i]));
}
}
template <typename U>
void fill(U &&tensor, int i)
{
switch(tensor.data_type())
{
case DataType::QASYMM8:
{
std::pair<int, int> bounds = get_quantized_bounds(tensor.quantization_info(), -1.0f, 1.0f);
std::uniform_int_distribution<uint8_t> distribution(bounds.first, bounds.second);
library->fill(tensor, distribution, i);
break;
}
case DataType::QASYMM8_SIGNED:
{
std::pair<int, int> bounds = get_quantized_qasymm8_signed_bounds(tensor.quantization_info(), -1.0f, 1.0f);
std::uniform_int_distribution<int8_t> distribution(bounds.first, bounds.second);
library->fill(tensor, distribution, i);
break;
}
case DataType::QSYMM8_PER_CHANNEL:
{
int min_bound = 128;
int max_bound = -127;
for(size_t i = 0; i < _weight_quantization_info.scale().size(); i++)
{
std::pair<int, int> bounds = get_symm_quantized_per_channel_bounds(tensor.quantization_info(), -1.0f, 1.0f, i);
if(bounds.first < min_bound)
{
min_bound = bounds.first;
}
if(bounds.second > max_bound)
{
max_bound = bounds.second;
}
}
std::uniform_int_distribution<int8_t> distribution(min_bound, max_bound);
library->fill(tensor, distribution, i);
break;
}
case DataType::S32:
{
std::uniform_int_distribution<int32_t> distribution(-100, 100);
library->fill(tensor, distribution, i);
break;
}
case DataType::BFLOAT16:
case DataType::F16:
case DataType::F32:
{
std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
library->fill(tensor, distribution, i);
break;
}
default:
library->fill_tensor_uniform(tensor, i);
}
}
TensorType compute_target(TensorShape input_shape, TensorShape weights_shape, const TensorShape &bias_shape, TensorShape output_shape, const PadStrideInfo &info,
bool reshape_weights, const Size2D &dilation, const ActivationLayerInfo act_info)
{
ARM_COMPUTE_ERROR_ON((input_shape[2] % weights_shape[2]) != 0);
const unsigned int num_groups = input_shape[2] / weights_shape[2];
if(_data_layout == DataLayout::NHWC)
{
permute(input_shape, PermutationVector(2U, 0U, 1U));
permute(weights_shape, PermutationVector(2U, 0U, 1U));
permute(output_shape, PermutationVector(2U, 0U, 1U));
}
const int idx_width = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
WeightsInfo weights_info(!reshape_weights, weights_shape[idx_width], weights_shape[idx_height], weights_shape[3]);
TensorShape reshaped_weights_shape(weights_shape);
// Create tensors
TensorType src = create_tensor<TensorType>(input_shape, _data_type, 1, _quantization_info, _data_layout);
TensorType weights = create_tensor<TensorType>(reshaped_weights_shape, _weights_data_type, 1, _weight_quantization_info, _data_layout);
TensorType bias = create_tensor<TensorType>(bias_shape, _bias_data_type, 1, _quantization_info, _data_layout);
TensorType dst = create_tensor<TensorType>(output_shape, _output_data_type, 1, _quantization_info, _data_layout);
// Create and configure function
FunctionType conv;
conv.configure(&src, &weights, &bias, &dst, info, weights_info, dilation, act_info, num_groups);
ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(weights.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
// Allocate tensors
src.allocator()->allocate();
weights.allocator()->allocate();
bias.allocator()->allocate();
dst.allocator()->allocate();
ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!weights.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
// Fill tensors
fill(AccessorType(src), 0);
fill(AccessorType(weights), 1);
fill(AccessorType(bias), 2);
// Compute NEConvolutionLayer function
conv.run();
return dst;
}
SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, const PadStrideInfo &info,
const Size2D &dilation, const ActivationLayerInfo act_info)
{
ARM_COMPUTE_ERROR_ON((input_shape[2] % weights_shape[2]) != 0);
const unsigned int num_groups = input_shape[2] / weights_shape[2];
// Setup reference data types
const DataType src_dt = _is_bfloat16 ? DataType::F32 : _data_type;
const DataType weights_dt = _is_bfloat16 ? DataType::F32 : _weights_data_type;
const DataType bias_dt = _is_bfloat16 ? DataType::F32 : _bias_data_type;
// Create reference
SimpleTensor<T> src{ input_shape, src_dt, 1, _quantization_info };
SimpleTensor<TW> weights{ weights_shape, weights_dt, 1, _weight_quantization_info };
SimpleTensor<TBias> bias{ bias_shape, bias_dt, 1, _quantization_info };
fill(src, 0);
fill(weights, 1);
fill(bias, 2);
// Fill with bfloat16 to perform the conversion and reduce the mismatches in the output
if(_is_bfloat16)
{
regularize_values(static_cast<void *>(src.data()), src.num_elements());
regularize_values(static_cast<void *>(weights.data()), weights.num_elements());
}
return (act_info.enabled()) ? reference::activation_layer<T>(reference::convolution_layer<T>(src, weights, bias, output_shape, info, dilation, num_groups),
act_info) :
reference::convolution_layer<T>(src, weights, bias, output_shape, info, dilation, num_groups);
}
TensorType _target{};
SimpleTensor<T> _reference{};
DataType _data_type{};
DataType _weights_data_type{};
DataType _bias_data_type{};
DataType _output_data_type{};
DataLayout _data_layout{};
QuantizationInfo _quantization_info{};
QuantizationInfo _weight_quantization_info{};
bool _is_quantized = false;
bool _is_bfloat16 = false;
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class ConvolutionValidationFixture : public ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
{
public:
template <typename...>
void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type,
DataLayout data_layout, ActivationLayerInfo act_info)
{
ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, reshape_weights,
data_type, data_type, data_layout,
QuantizationInfo(), QuantizationInfo(), act_info);
}
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class ConvolutionValidationQuantizedFixture : public ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
{
public:
template <typename...>
void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type,
DataLayout data_layout, QuantizationInfo quantization_info, ActivationLayerInfo act_info)
{
ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, reshape_weights,
data_type, data_type, data_layout, quantization_info, quantization_info, act_info);
}
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TW>
class ConvolutionValidationQuantizedPerChannelFixture : public ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, TW>
{
public:
template <typename...>
void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type,
DataLayout data_layout, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataType weights_data_type)
{
std::vector<float> weights_scales{};
std::mt19937 gen(library->seed());
std::uniform_real_distribution<> dis(0.01f, 1);
for(size_t i = 0; i < output_shape[2]; ++i)
{
weights_scales.push_back(dis(gen));
}
ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, TW>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation,
reshape_weights, data_type, weights_data_type, data_layout,
quantization_info, QuantizationInfo(weights_scales), act_info);
}
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE */
|