1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
/*
* Copyright (c) 2019 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_TEST_FUSEBATCHNORMALIZATION_FIXTURE
#define ARM_COMPUTE_TEST_FUSEBATCHNORMALIZATION_FIXTURE
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/FuseBatchNormalization.h"
#include <tuple>
#include <utility>
namespace arm_compute
{
namespace test
{
namespace validation
{
template <typename TensorType, typename AccessorType, typename FunctionType, int dims_weights, typename T>
class FuseBatchNormalizationFixture : public framework::Fixture
{
public:
template <typename...>
void setup(TensorShape shape_w, DataType data_type, DataLayout data_layout, bool in_place, bool with_bias, bool with_gamma, bool with_beta)
{
std::tie(_target_w, _target_b) = compute_target(shape_w, data_type, data_layout, in_place, with_bias, with_gamma, with_beta);
std::tie(_reference_w, _reference_b) = compute_reference(shape_w, data_type, with_bias, with_gamma, with_beta);
}
protected:
template <typename U>
void fill(U &&tensor, int i, float min, float max)
{
library->fill_tensor_uniform(tensor, i, min, max);
}
std::pair<TensorType, TensorType> compute_target(TensorShape shape_w, DataType data_type, DataLayout data_layout, bool in_place, bool with_bias, bool with_gamma, bool with_beta)
{
const TensorShape shape_v(shape_w[dims_weights - 1]);
if(data_layout == DataLayout::NHWC)
{
permute(shape_w, PermutationVector(2U, 0U, 1U));
}
const bool in_place_w = in_place;
const bool in_place_b = with_bias ? in_place : false;
// Create tensors
TensorType w = create_tensor<TensorType>(shape_w, data_type, 1, QuantizationInfo(), data_layout);
TensorType b = create_tensor<TensorType>(shape_v, data_type);
TensorType mean = create_tensor<TensorType>(shape_v, data_type);
TensorType var = create_tensor<TensorType>(shape_v, data_type);
TensorType w_fused = create_tensor<TensorType>(shape_w, data_type, 1, QuantizationInfo(), data_layout);
TensorType b_fused = create_tensor<TensorType>(shape_v, data_type);
TensorType beta = create_tensor<TensorType>(shape_v, data_type);
TensorType gamma = create_tensor<TensorType>(shape_v, data_type);
auto b_to_use = with_bias ? &b : nullptr;
auto gamma_to_use = with_gamma ? &gamma : nullptr;
auto beta_to_use = with_beta ? &beta : nullptr;
auto w_fused_to_use = in_place_w ? nullptr : &w_fused;
auto b_fused_to_use = in_place_b ? nullptr : &b_fused;
const FuseBatchNormalizationType fuse_bn_type = dims_weights == 3 ?
FuseBatchNormalizationType::DEPTHWISECONVOLUTION :
FuseBatchNormalizationType::CONVOLUTION;
// Create and configure function
FunctionType fuse_batch_normalization;
fuse_batch_normalization.configure(&w, &mean, &var, w_fused_to_use, b_fused_to_use, b_to_use, beta_to_use, gamma_to_use, _epsilon, fuse_bn_type);
ARM_COMPUTE_EXPECT(w.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(mean.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(var.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(w_fused.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(b_fused.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(beta.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(gamma.info()->is_resizable(), framework::LogLevel::ERRORS);
// Allocate tensors
w.allocator()->allocate();
b.allocator()->allocate();
mean.allocator()->allocate();
var.allocator()->allocate();
w_fused.allocator()->allocate();
b_fused.allocator()->allocate();
beta.allocator()->allocate();
gamma.allocator()->allocate();
ARM_COMPUTE_EXPECT(!w.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!mean.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!var.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!w_fused.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!b_fused.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!beta.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!gamma.info()->is_resizable(), framework::LogLevel::ERRORS);
// Fill tensors
fill(AccessorType(w), 0U, -1.0f, 1.0f);
fill(AccessorType(b), 1U, -1.0f, 1.0f);
fill(AccessorType(mean), 2U, -1.0f, 1.0f);
fill(AccessorType(var), 3U, 0.0f, 1.0f);
fill(AccessorType(beta), 4U, -1.0f, 1.0f);
fill(AccessorType(gamma), 5U, -1.0f, 1.0f);
// Compute function
fuse_batch_normalization.run();
return std::make_pair(std::move(in_place_w ? w : w_fused), std::move(in_place_b ? b : b_fused));
}
std::pair<SimpleTensor<T>, SimpleTensor<T>> compute_reference(TensorShape shape_w, DataType data_type, bool with_bias, bool with_gamma, bool with_beta)
{
const TensorShape shape_v(shape_w[dims_weights - 1]);
SimpleTensor<T> w{ shape_w, data_type };
SimpleTensor<T> b{ shape_v, data_type };
SimpleTensor<T> mean{ shape_v, data_type };
SimpleTensor<T> var{ shape_v, data_type };
SimpleTensor<T> w_fused{ shape_w, data_type };
SimpleTensor<T> b_fused{ shape_v, data_type };
SimpleTensor<T> beta{ shape_v, data_type };
SimpleTensor<T> gamma{ shape_v, data_type };
// Fill reference tensor
fill(w, 0U, -1.0f, 1.0f);
fill(b, 1U, -1.0f, 1.0f);
fill(mean, 2U, -1.0f, 1.0f);
fill(var, 3U, 0.0f, 1.0f);
fill(beta, 4U, -1.0f, 1.0f);
fill(gamma, 5U, -1.0f, 1.0f);
if(!with_bias)
{
// Fill with zeros
fill(b, 0U, 0.0f, 0.0f);
}
if(!with_gamma)
{
// Fill with ones
fill(gamma, 0U, 1.0f, 1.0f);
}
if(!with_beta)
{
// Fill with zeros
fill(beta, 0U, 0.0f, 0.0f);
}
switch(dims_weights)
{
case 3:
// Weights for depth wise convolution layer
reference::fuse_batch_normalization_dwc_layer(w, mean, var, w_fused, b_fused, b, beta, gamma, _epsilon);
break;
case 4:
// Weights for convolution layer
reference::fuse_batch_normalization_conv_layer(w, mean, var, w_fused, b_fused, b, beta, gamma, _epsilon);
break;
default:
ARM_COMPUTE_ERROR("Not supported number of dimensions for the input weights tensor");
}
return std::make_pair(std::move(w_fused), std::move(b_fused));
}
const float _epsilon{ 0.0001f };
TensorType _target_w{};
TensorType _target_b{};
SimpleTensor<T> _reference_w{};
SimpleTensor<T> _reference_b{};
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* ARM_COMPUTE_TEST_FUSEBATCHNORMALIZATION_FIXTURE */
|