1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
/*
* Copyright (c) 2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_TEST_POOLING_LAYER_FIXTURE
#define ARM_COMPUTE_TEST_POOLING_LAYER_FIXTURE
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/Tensor.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/reference/MaxUnpoolingLayer.h"
#include "tests/validation/reference/PoolingLayer.h"
#include <random>
namespace arm_compute
{
namespace test
{
namespace validation
{
template <typename TensorType, typename AccessorType, typename PoolingFunctionType, typename MaxUnpoolingFunctionType, typename T>
class MaxUnpoolingLayerValidationGenericFixture : public framework::Fixture
{
public:
template <typename...>
void setup(TensorShape shape, PoolingLayerInfo pool_info, DataType data_type, DataLayout data_layout)
{
std::mt19937 gen(library->seed());
std::uniform_int_distribution<> offset_dis(0, 20);
const float scale = data_type == DataType::QASYMM8_SIGNED ? 1.f / 127.f : 1.f / 255.f;
const int scale_in = data_type == DataType::QASYMM8_SIGNED ? -offset_dis(gen) : offset_dis(gen);
const int scale_out = data_type == DataType::QASYMM8_SIGNED ? -offset_dis(gen) : offset_dis(gen);
const QuantizationInfo input_qinfo(scale, scale_in);
const QuantizationInfo output_qinfo(scale, scale_out);
_pool_info = pool_info;
_target = compute_target(shape, pool_info, data_type, data_layout, input_qinfo, output_qinfo);
_reference = compute_reference(shape, pool_info, data_type, input_qinfo, output_qinfo);
}
protected:
template <typename U>
void fill(U &&tensor)
{
if(!is_data_type_quantized(tensor.data_type()))
{
std::uniform_real_distribution<> distribution(-1.f, 1.f);
library->fill(tensor, distribution, 0);
}
else // data type is quantized_asymmetric
{
library->fill_tensor_uniform(tensor, 0);
}
}
TensorType compute_target(TensorShape input_shape, PoolingLayerInfo pool_info,
DataType data_type, DataLayout data_layout,
QuantizationInfo input_qinfo, QuantizationInfo output_qinfo)
{
// Change shape in case of NHWC.
if(data_layout == DataLayout::NHWC)
{
permute(input_shape, PermutationVector(2U, 0U, 1U));
}
// Create tensors
TensorType src = create_tensor<TensorType>(input_shape, data_type, 1, input_qinfo, data_layout);
const TensorShape dst_shape = misc::shape_calculator::compute_pool_shape(*(src.info()), pool_info);
TensorType dst = create_tensor<TensorType>(dst_shape, data_type, 1, output_qinfo, data_layout);
TensorType unpooled = create_tensor<TensorType>(input_shape, data_type, 1, output_qinfo, data_layout);
TensorType indices = create_tensor<TensorType>(dst_shape, DataType::U32, 1, output_qinfo, data_layout);
// Create and configure function
PoolingFunctionType pool_layer;
pool_layer.configure(&src, &dst, pool_info, &indices);
// Create and configure function
MaxUnpoolingFunctionType unpool_layer;
unpool_layer.configure(&dst, &indices, &unpooled, pool_info);
ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(indices.info()->is_resizable(), framework::LogLevel::ERRORS);
// Allocate tensors
src.allocator()->allocate();
dst.allocator()->allocate();
indices.allocator()->allocate();
unpooled.allocator()->allocate();
ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!indices.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!unpooled.info()->is_resizable(), framework::LogLevel::ERRORS);
// Fill tensors
fill(AccessorType(src));
// Compute function
pool_layer.run();
unpool_layer.run();
return unpooled;
}
SimpleTensor<T> compute_reference(TensorShape input_shape, PoolingLayerInfo info, DataType data_type,
QuantizationInfo input_qinfo, QuantizationInfo output_qinfo)
{
SimpleTensor<T> src(input_shape, data_type, 1, input_qinfo);
SimpleTensor<uint32_t> indices{};
// Fill reference
fill(src);
auto pooled_tensor = reference::pooling_layer<T>(src, info, output_qinfo, &indices);
return reference::max_unpooling_layer<T>(pooled_tensor, info, output_qinfo, indices, input_shape);
}
TensorType _target{};
SimpleTensor<T> _reference{};
PoolingLayerInfo _pool_info{};
};
template <typename TensorType, typename AccessorType, typename F1, typename F2, typename T>
class MaxUnpoolingLayerValidationFixture : public MaxUnpoolingLayerValidationGenericFixture<TensorType, AccessorType, F1, F2, T>
{
public:
template <typename...>
void setup(TensorShape shape, PoolingType pool_type, Size2D pool_size, PadStrideInfo pad_stride_info, DataType data_type, DataLayout data_layout)
{
MaxUnpoolingLayerValidationGenericFixture<TensorType, AccessorType, F1, F2, T>::setup(shape, PoolingLayerInfo(pool_type, pool_size, data_layout, pad_stride_info, true),
data_type, data_layout);
}
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* ARM_COMPUTE_TEST_POOLING_LAYER_FIXTURE */
|