1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/*
* Copyright (c) 2018 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_TEST_OPTICAL_FLOW
#define ARM_COMPUTE_TEST_OPTICAL_FLOW
#include "arm_compute/core/PyramidInfo.h"
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/Types.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/reference/OpticalFlow.h"
namespace arm_compute
{
namespace test
{
namespace validation
{
template <typename TensorType,
typename AccessorType,
typename ArrayType,
typename ArrayAccessorType,
typename FunctionType,
typename PyramidType,
typename PyramidFunctionType,
typename T>
class OpticalFlowValidationFixture : public framework::Fixture
{
public:
template <typename...>
void setup(std::string old_image_name, std::string new_image_name, OpticalFlowParameters params,
size_t num_levels, size_t num_keypoints, Format format, BorderMode border_mode)
{
std::mt19937 gen(library->seed());
std::uniform_int_distribution<uint8_t> int_dist(0, 255);
const uint8_t constant_border_value = int_dist(gen);
// Create keypoints
std::vector<KeyPoint> old_keypoints = generate_random_keypoints(library->get_image_shape(old_image_name), num_keypoints, library->seed(), num_levels);
std::vector<KeyPoint> new_keypoints_estimates = old_keypoints;
_target = compute_target(old_image_name, new_image_name, params, num_levels, old_keypoints, new_keypoints_estimates, format, border_mode, constant_border_value);
_reference = compute_reference(old_image_name, new_image_name, params, num_levels, old_keypoints, new_keypoints_estimates, format, border_mode, constant_border_value);
}
protected:
template <typename V>
void fill(V &&tensor, const std::string image, Format format)
{
library->fill(tensor, image, format);
}
ArrayType compute_target(std::string old_image_name, std::string new_image_name, OpticalFlowParameters params, size_t num_levels,
std::vector<KeyPoint> &old_keypoints, std::vector<KeyPoint> &new_keypoints_estimates,
Format format, BorderMode border_mode, uint8_t constant_border_value)
{
// Get image shapes
TensorShape old_shape = library->get_image_shape(old_image_name);
TensorShape new_shape = library->get_image_shape(new_image_name);
// Create tensors
auto old_image = create_tensor<TensorType>(old_shape, format);
auto new_image = create_tensor<TensorType>(new_shape, format);
// Load keypoints
ArrayType old_points(old_keypoints.size());
ArrayType new_points_estimates(new_keypoints_estimates.size());
ArrayType new_points(old_keypoints.size());
fill_array(ArrayAccessorType(old_points), old_keypoints);
fill_array(ArrayAccessorType(new_points_estimates), new_keypoints_estimates);
// Create pyramid images
PyramidInfo pyramid_info(num_levels, SCALE_PYRAMID_HALF, old_image.info()->tensor_shape(), format);
PyramidType old_pyramid = create_pyramid<PyramidType>(pyramid_info);
PyramidType new_pyramid = create_pyramid<PyramidType>(pyramid_info);
// Create and configure pyramid functions
PyramidFunctionType old_gp;
old_gp.configure(&old_image, &old_pyramid, border_mode, constant_border_value);
PyramidFunctionType new_gp;
new_gp.configure(&new_image, &new_pyramid, border_mode, constant_border_value);
for(size_t i = 0; i < pyramid_info.num_levels(); ++i)
{
ARM_COMPUTE_EXPECT(old_pyramid.get_pyramid_level(i)->info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(new_pyramid.get_pyramid_level(i)->info()->is_resizable(), framework::LogLevel::ERRORS);
}
// Create and configure optical flow function
FunctionType optical_flow;
optical_flow.configure(&old_pyramid,
&new_pyramid,
&old_points,
&new_points_estimates,
&new_points,
params.termination,
params.epsilon,
params.num_iterations,
params.window_dimension,
params.use_initial_estimate,
border_mode,
constant_border_value);
ARM_COMPUTE_EXPECT(old_image.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(new_image.info()->is_resizable(), framework::LogLevel::ERRORS);
// Allocate input tensors
old_image.allocator()->allocate();
new_image.allocator()->allocate();
// Allocate pyramids
old_pyramid.allocate();
new_pyramid.allocate();
ARM_COMPUTE_EXPECT(!old_image.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!new_image.info()->is_resizable(), framework::LogLevel::ERRORS);
for(size_t i = 0; i < pyramid_info.num_levels(); ++i)
{
ARM_COMPUTE_EXPECT(!old_pyramid.get_pyramid_level(i)->info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!new_pyramid.get_pyramid_level(i)->info()->is_resizable(), framework::LogLevel::ERRORS);
}
// Fill tensors
fill(AccessorType(old_image), old_image_name, format);
fill(AccessorType(new_image), new_image_name, format);
// Compute functions
old_gp.run();
new_gp.run();
optical_flow.run();
return new_points;
}
std::vector<KeyPoint> compute_reference(std::string old_image_name, std::string new_image_name,
OpticalFlowParameters params, size_t num_levels,
std::vector<KeyPoint> &old_keypoints, std::vector<KeyPoint> &new_keypoints_estimates,
Format format, BorderMode border_mode, uint8_t constant_border_value)
{
SimpleTensor<T> old_image{ library->get_image_shape(old_image_name), data_type_from_format(format) };
SimpleTensor<T> new_image{ library->get_image_shape(new_image_name), data_type_from_format(format) };
fill(old_image, old_image_name, format);
fill(new_image, new_image_name, format);
return reference::optical_flow<T>(old_image, new_image, params, num_levels, old_keypoints, new_keypoints_estimates,
border_mode, constant_border_value);
}
ArrayType _target{};
std::vector<KeyPoint> _reference{};
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* ARM_COMPUTE_TEST_OPTICAL_FLOW */
|