1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
/*
* Copyright (c) 2017-2019 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "CannyEdgeDetector.h"
#include "Utils.h"
#include "support/ToolchainSupport.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/Magnitude.h"
#include "tests/validation/reference/NonMaximaSuppression.h"
#include "tests/validation/reference/Phase.h"
#include "tests/validation/reference/Sobel.h"
#include <cmath>
#include <stack>
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace reference
{
namespace
{
const auto MARK_ZERO = 0u;
const auto MARK_MAYBE = 127u;
const auto MARK_EDGE = 255u;
template <typename T>
void trace_edge(SimpleTensor<T> &dst, const ValidRegion &valid_region)
{
std::stack<Coordinates> pixels_stack;
for(auto i = 0; i < dst.num_elements(); ++i)
{
if(dst[i] == MARK_EDGE)
{
pixels_stack.push(index2coord(dst.shape(), i));
}
}
while(!pixels_stack.empty())
{
const Coordinates pixel_coord = pixels_stack.top();
pixels_stack.pop();
std::array<Coordinates, 8> neighbours =
{
{
Coordinates(pixel_coord.x() - 1, pixel_coord.y() + 0),
Coordinates(pixel_coord.x() + 1, pixel_coord.y() + 0),
Coordinates(pixel_coord.x() - 1, pixel_coord.y() - 1),
Coordinates(pixel_coord.x() + 1, pixel_coord.y() + 1),
Coordinates(pixel_coord.x() + 0, pixel_coord.y() - 1),
Coordinates(pixel_coord.x() + 0, pixel_coord.y() + 1),
Coordinates(pixel_coord.x() + 1, pixel_coord.y() - 1),
Coordinates(pixel_coord.x() - 1, pixel_coord.y() + 1)
}
};
// Mark MAYBE neighbours as edges since they are next to an EDGE
std::for_each(neighbours.begin(), neighbours.end(), [&](Coordinates & coord)
{
if(is_in_valid_region(valid_region, coord))
{
const size_t pixel_index = coord2index(dst.shape(), coord);
const T pixel = dst[pixel_index];
if(pixel == MARK_MAYBE)
{
dst[pixel_index] = MARK_EDGE;
pixels_stack.push(coord);
}
}
});
}
// Mark all remaining MAYBE pixels as ZERO (not edges)
for(auto i = 0; i < dst.num_elements(); ++i)
{
if(dst[i] == MARK_MAYBE)
{
dst[i] = MARK_ZERO;
}
}
}
template <typename U, typename T>
SimpleTensor<T> canny_edge_detector_impl(const SimpleTensor<T> &src, int32_t upper, int32_t lower, int gradient_size, MagnitudeType norm_type,
BorderMode border_mode, T constant_border_value)
{
ARM_COMPUTE_ERROR_ON(gradient_size != 3 && gradient_size != 5 && gradient_size != 7);
ARM_COMPUTE_ERROR_ON(lower < 0 || lower >= upper);
// Output: T == uint8_t
SimpleTensor<T> dst{ src.shape(), src.data_type() };
ValidRegion valid_region = shape_to_valid_region(src.shape(), border_mode == BorderMode::UNDEFINED, BorderSize(gradient_size / 2 + 1));
// Sobel computation: U == int16_t or int32_t
SimpleTensor<U> gx{};
SimpleTensor<U> gy{};
std::tie(gx, gy) = sobel<U>(src, gradient_size, border_mode, constant_border_value, GradientDimension::GRAD_XY);
using unsigned_U = typename traits::make_unsigned_conditional_t<U>::type;
using promoted_U = typename common_promoted_signed_type<U>::intermediate_type;
// Gradient magnitude and phase (edge direction)
const DataType mag_data_type = gx.data_type() == DataType::S16 ? DataType::U16 : DataType::U32;
SimpleTensor<unsigned_U> grad_mag{ gx.shape(), mag_data_type };
SimpleTensor<uint8_t> grad_dir{ gy.shape(), DataType::U8 };
for(auto i = 0; i < grad_mag.num_elements(); ++i)
{
double mag = 0.f;
if(norm_type == MagnitudeType::L2NORM)
{
mag = support::cpp11::round(std::sqrt(static_cast<promoted_U>(gx[i]) * gx[i] + static_cast<promoted_U>(gy[i]) * gy[i]));
}
else // MagnitudeType::L1NORM
{
mag = static_cast<promoted_U>(std::abs(gx[i])) + static_cast<promoted_U>(std::abs(gy[i]));
}
float angle = 180.f * std::atan2(static_cast<float>(gy[i]), static_cast<float>(gx[i])) / M_PI;
grad_dir[i] = support::cpp11::round(angle < 0.f ? 180 + angle : angle);
grad_mag[i] = saturate_cast<unsigned_U>(mag);
}
/*
Quantise the phase into 4 directions
0° dir=0 0.0 <= p < 22.5 or 157.5 <= p < 180
45° dir=1 22.5 <= p < 67.5
90° dir=2 67.5 <= p < 112.5
135° dir=3 112.5 <= p < 157.5
*/
for(auto i = 0; i < grad_dir.num_elements(); ++i)
{
const auto direction = std::fabs(grad_dir[i]);
grad_dir[i] = (direction < 22.5 || direction >= 157.5) ? 0 : (direction < 67.5) ? 1 : (direction < 112.5) ? 2 : 3;
}
// Non-maximum suppression
std::vector<int> strong_edges;
const auto upper_thresh = static_cast<uint32_t>(upper);
const auto lower_thresh = static_cast<uint32_t>(lower);
const auto pixel_at_offset = [&](const SimpleTensor<unsigned_U> &tensor, const Coordinates & coord, int xoffset, int yoffset)
{
return tensor_elem_at(tensor, Coordinates{ coord.x() + xoffset, coord.y() + yoffset }, border_mode, static_cast<unsigned_U>(constant_border_value));
};
for(auto i = 0; i < dst.num_elements(); ++i)
{
const auto coord = index2coord(dst.shape(), i);
if(!is_in_valid_region(valid_region, coord) || grad_mag[i] <= lower_thresh)
{
dst[i] = MARK_ZERO;
continue;
}
unsigned_U mag_90;
unsigned_U mag90;
switch(grad_dir[i])
{
case 0: // North/South edge direction, compare against East/West pixels (left & right)
mag_90 = pixel_at_offset(grad_mag, coord, -1, 0);
mag90 = pixel_at_offset(grad_mag, coord, 1, 0);
break;
case 1: // NE/SW edge direction, compare against NW/SE pixels (top-left & bottom-right)
mag_90 = pixel_at_offset(grad_mag, coord, -1, -1);
mag90 = pixel_at_offset(grad_mag, coord, +1, +1);
break;
case 2: // East/West edge direction, compare against North/South pixels (top & bottom)
mag_90 = pixel_at_offset(grad_mag, coord, 0, -1);
mag90 = pixel_at_offset(grad_mag, coord, 0, +1);
break;
case 3: // NW/SE edge direction, compare against NE/SW pixels (top-right & bottom-left)
mag_90 = pixel_at_offset(grad_mag, coord, +1, -1);
mag90 = pixel_at_offset(grad_mag, coord, -1, +1);
break;
default:
ARM_COMPUTE_ERROR("Invalid gradient phase provided");
break;
}
// Potential edge if greater than both pixels at +/-90° on either side
if(grad_mag[i] > mag_90 && grad_mag[i] > mag90)
{
// Double thresholding and edge tracing
if(grad_mag[i] > upper_thresh)
{
dst[i] = MARK_EDGE; // Definite edge pixel
strong_edges.emplace_back(i);
}
else
{
dst[i] = MARK_MAYBE;
}
}
else
{
dst[i] = MARK_ZERO; // Since not greater than neighbours
}
}
// Final edge tracing
trace_edge<T>(dst, valid_region);
return dst;
}
} // namespace
template <typename T>
SimpleTensor<T> canny_edge_detector(const SimpleTensor<T> &src,
int32_t upper_thresh, int32_t lower_thresh, int gradient_size, MagnitudeType norm_type,
BorderMode border_mode, T constant_border_value)
{
if(gradient_size < 7)
{
return canny_edge_detector_impl<int16_t>(src, upper_thresh, lower_thresh, gradient_size, norm_type, border_mode, constant_border_value);
}
else
{
return canny_edge_detector_impl<int32_t>(src, upper_thresh, lower_thresh, gradient_size, norm_type, border_mode, constant_border_value);
}
}
template SimpleTensor<uint8_t> canny_edge_detector(const SimpleTensor<uint8_t> &src,
int32_t upper_thresh, int32_t lower_thresh, int gradient_size, MagnitudeType norm_type,
BorderMode border_mode, uint8_t constant_border_value);
} // namespace reference
} // namespace validation
} // namespace test
} // namespace arm_compute
|