1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
/*
* Copyright (c) 2017-2019 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_TEST_VALIDATION_CONVOLUTION_H
#define ARM_COMPUTE_TEST_VALIDATION_CONVOLUTION_H
#include "arm_compute/core/utils/misc/Requires.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/UtilsQuantizedAsymm.h"
namespace arm_compute
{
namespace test
{
namespace convolution_3d
{
namespace detail
{
inline bool is_valid_pixel(int i, int min, int max)
{
return (i >= min && i < max);
}
// 3D convolution for floating point type
template < typename T, typename TW, typename TB, typename std::enable_if < validation::is_floating_point<T>::value &&validation::is_floating_point<TW>::value
&&validation::is_floating_point<TB>::value,
int >::type = 0 >
inline void convolution3d(const SimpleTensor<T> &in, const SimpleTensor<TW> &weights, const SimpleTensor<TB> &bias, SimpleTensor<T> &out,
int i_offset, int w_offset, int b_offset, int o_offset,
int xi, int yi, int width_in, int height_in, int depth_in, int width_weights, int height_weights, int dilation_x = 1, int dilation_y = 1, int filter_id = 0)
{
ARM_COMPUTE_UNUSED(filter_id);
const T *in_ptr = in.data() + i_offset;
const TW *w_ptr = weights.data() + w_offset;
const TB *b_ptr = bias.data() + b_offset;
T *out_ptr = out.data() + o_offset;
const int half_width_weights_start = width_weights / 2;
const int half_width_weights_end = ((width_weights % 2) == 0) ? (half_width_weights_start - 1) : half_width_weights_start;
const int half_height_weights_start = height_weights / 2;
const int half_height_weights_end = ((height_weights % 2) == 0) ? (half_height_weights_start - 1) : half_height_weights_start;
// Reset accumulator
T acc(0);
// Compute a 2D convolution for each IFM and accumulate the result
for(int ifm = 0; ifm < depth_in; ++ifm)
{
// Compute the offset for the input slice
const int offset_slice_in = xi + yi * width_in + ifm * width_in * height_in;
// Compute 2D convolution
for(int yk = -half_height_weights_start; yk <= half_height_weights_end; ++yk)
{
for(int xk = -half_width_weights_start; xk <= half_width_weights_end; ++xk)
{
// Check if the pixel is out-of-bound
if(is_valid_pixel(xi + xk * dilation_x, 0, width_in) && is_valid_pixel(yi + yk * dilation_y, 0, height_in))
{
const int idx = xk + half_width_weights_start;
const int idy = yk + half_height_weights_start;
const T i_value = in_ptr[offset_slice_in + xk * dilation_x + yk * dilation_y * width_in];
const TW w_value = w_ptr[idx + idy * width_weights + ifm * width_weights * height_weights];
acc += i_value * w_value;
}
}
}
}
// Accumulate the bias and store the result
*out_ptr = acc + (*b_ptr);
}
// 3D convolution for QASYMM8 type
template < typename T, typename TW, typename TB, REQUIRES_TA((std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value) &&(std::is_same<TW, uint8_t>::value
|| std::is_same<TW, int8_t>::value)) >
inline void convolution3d(const SimpleTensor<T> &in, const SimpleTensor<TW> &weights, const SimpleTensor<TB> &bias, SimpleTensor<T> &out,
int i_offset, int w_offset, int b_offset, int o_offset,
int xi, int yi, int width_in, int height_in, int depth_in, int width_weights, int height_weights, int dilation_x = 1, int dilation_y = 1, int filter_id = 0)
{
const T *in_ptr = in.data() + i_offset;
const TW *w_ptr = weights.data() + w_offset;
const TB *b_ptr = bias.data() + b_offset;
T *out_ptr = out.data() + o_offset;
const UniformQuantizationInfo iq_info = in.quantization_info().uniform();
const UniformQuantizationInfo wq_info = weights.quantization_info().uniform();
const UniformQuantizationInfo oq_info = out.quantization_info().uniform();
const int input_offset = -iq_info.offset;
const float input_scale = iq_info.scale;
int weights_offset = -wq_info.offset;
float weights_scale = wq_info.scale;
if(is_data_type_quantized_per_channel(weights.data_type()))
{
if(is_data_type_quantized_asymmetric(weights.data_type()))
{
weights_offset = weights.quantization_info().offset()[filter_id];
}
else
{
weights_offset = 0;
}
weights_scale = weights.quantization_info().scale()[filter_id];
}
const int output_offset = oq_info.offset;
const float output_scale = oq_info.scale;
int output_multiplier = 0;
int output_shift = 0;
const float multiplier = input_scale * weights_scale / output_scale;
arm_compute::quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
const int half_width_weights_start = width_weights / 2;
const int half_width_weights_end = ((width_weights % 2) == 0) ? (half_width_weights_start - 1) : half_width_weights_start;
const int half_height_weights_start = height_weights / 2;
const int half_height_weights_end = ((height_weights % 2) == 0) ? (half_height_weights_start - 1) : half_height_weights_start;
// Reset accumulator
int32_t acc(0);
// Compute a 2D convolution for each IFM and accumulate the result
for(int ifm = 0; ifm < depth_in; ++ifm)
{
// Compute the offset for the input slice
const int offset_slice_in = xi + yi * width_in + ifm * width_in * height_in;
// Compute 2D convolution
for(int yk = -half_height_weights_start; yk <= half_height_weights_end; ++yk)
{
for(int xk = -half_width_weights_start; xk <= half_width_weights_end; ++xk)
{
// Check if the pixel is out-of-bound
if(is_valid_pixel(xi + xk * dilation_x, 0, width_in) && is_valid_pixel(yi + yk * dilation_y, 0, height_in))
{
const int idx = xk + half_width_weights_start;
const int idy = yk + half_height_weights_start;
const int32_t i_value = in_ptr[offset_slice_in + xk * dilation_x + yk * dilation_y * width_in];
const int32_t w_value = w_ptr[idx + idy * width_weights + ifm * width_weights * height_weights];
acc += (i_value + input_offset) * (w_value + weights_offset);
}
}
}
}
// Accumulate the bias
acc += (*b_ptr);
// Quantize down
acc = validation::quantize_down_scale_by_fixedpoint(acc, output_multiplier, output_shift, output_offset,
std::numeric_limits<T>::lowest(), std::numeric_limits<T>::max());
// Store the result
*out_ptr = acc;
}
} // namespace detail
} // namespace convolution_3d
} // namespace test
} // namespace arm_compute
#endif /* ARM_COMPUTE_TEST_VALIDATION_CONVOLUTION_H */
|