1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
/*
* Copyright (c) 2019-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "CropResize.h"
#include "Utils.h"
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace reference
{
namespace
{
SimpleTensor<float> scale_image(const SimpleTensor<float> &in, const TensorShape &out_shape, InterpolationPolicy policy, float extrapolation_value)
{
ARM_COMPUTE_ERROR_ON(in.data_layout() != DataLayout::NHWC);
SimpleTensor<float> out{ out_shape, DataType::F32, 1, QuantizationInfo(), DataLayout::NHWC };
// Compute the ratio between source width/height and destination width/height
const auto wr = static_cast<float>(in.shape()[1]) / static_cast<float>(out_shape[1]);
const auto hr = static_cast<float>(in.shape()[2]) / static_cast<float>(out_shape[2]);
const auto width = static_cast<int>(in.shape().y());
const auto height = static_cast<int>(in.shape().z());
Window win;
win.use_tensor_dimensions(out_shape);
execute_window_loop(win, [&](const Coordinates & out_id)
{
Coordinates in_id(out_id);
int idw = in_id.y();
int idh = in_id.z();
switch(policy)
{
case InterpolationPolicy::NEAREST_NEIGHBOR:
{
//Calculate the source coords without -0.5f is equivalent to round the x_scr/y_src coords
float x_src = std::floor(idw * wr);
float y_src = std::floor(idh * hr);
in_id.set(1, x_src);
in_id.set(2, y_src);
// If coordinates in range of tensor's width or height
if(is_valid_pixel_index(x_src, y_src, width, height, 0))
{
*reinterpret_cast<float *>(out(out_id)) = tensor_elem_at(in, in_id, BorderMode::CONSTANT, extrapolation_value);
}
else
{
*reinterpret_cast<float *>(out(out_id)) = extrapolation_value;
}
break;
}
case InterpolationPolicy::BILINEAR:
{
float x_src = idw * wr;
float y_src = idh * hr;
in_id.set(1, std::floor(x_src));
in_id.set(2, std::floor(y_src));
if(is_valid_pixel_index(x_src, y_src, width, height, 0))
{
const int id_w = in_id[1];
const int id_h = in_id[2];
const float dx = x_src - id_w;
const float dy = y_src - id_h;
const float dx_1 = 1.0f - dx;
const float dy_1 = 1.0f - dy;
in_id.set(1, id_w);
in_id.set(2, id_h);
const float tl = tensor_elem_at(in, in_id, BorderMode::CONSTANT, extrapolation_value);
in_id.set(1, id_w + 1);
in_id.set(2, id_h);
const float tr = tensor_elem_at(in, in_id, BorderMode::CONSTANT, extrapolation_value);
in_id.set(1, id_w);
in_id.set(2, id_h + 1);
const float bl = tensor_elem_at(in, in_id, BorderMode::CONSTANT, extrapolation_value);
in_id.set(1, id_w + 1);
in_id.set(2, id_h + 1);
const float br = tensor_elem_at(in, in_id, BorderMode::CONSTANT, extrapolation_value);
*reinterpret_cast<float *>(out(out_id)) = tl * (dx_1 * dy_1) + tr * (dx * dy_1) + bl * (dx_1 * dy) + br * (dx * dy);
}
else
{
*reinterpret_cast<float *>(out(out_id)) = extrapolation_value;
}
break;
}
default:
ARM_COMPUTE_ERROR("Unsupported interpolation mode");
}
});
return out;
}
template <typename T>
SimpleTensor<float> crop_image(const SimpleTensor<T> &src, Coordinates start, Coordinates end, int32_t batch_index, float extrapolation_value)
{
TensorShape out_shape(src.shape()[0], static_cast<uint32_t>(abs(end[0] - start[0])) + 1, static_cast<uint32_t>(abs(end[1] - start[1])) + 1);
SimpleTensor<float> out{ out_shape, DataType::F32, 1, QuantizationInfo(), DataLayout::NHWC };
Window win;
win.use_tensor_dimensions(out_shape);
execute_window_loop(win, [&](const Coordinates & id)
{
bool out_of_bounds = false;
Coordinates offset(id[0], 0, 0, batch_index);
for(uint32_t i = 1; i < 3; ++i)
{
offset.set(i, end[i - 1] < start[i - 1] ? start[i - 1] - id[i] : start[i - 1] + id[i]);
if(offset[i] < 0 || static_cast<uint32_t>(offset[i]) > src.shape()[i] - 1)
{
out_of_bounds = true;
break;
}
}
if(!out_of_bounds)
{
*reinterpret_cast<float *>(out(id)) = static_cast<float>(*reinterpret_cast<const T *>(src(offset)));
}
else
{
*reinterpret_cast<float *>(out(id)) = extrapolation_value;
}
});
return out;
}
} // namespace
template <typename T>
SimpleTensor<float> crop_and_resize(const SimpleTensor<T> &src, const SimpleTensor<float> &boxes, SimpleTensor<int32_t> box_ind,
Coordinates2D crop_size, InterpolationPolicy method, float extrapolation_value)
{
ARM_COMPUTE_ERROR_ON(src.shape().num_dimensions() > 4);
ARM_COMPUTE_ERROR_ON(src.data_layout() != DataLayout::NHWC);
const TensorShape out_shape(src.shape()[0], crop_size.x, crop_size.y, boxes.shape()[1]);
SimpleTensor<float> out{ out_shape, DataType::F32, 1, QuantizationInfo(), DataLayout::NHWC };
const TensorShape scaled_image_shape(src.shape()[0], crop_size.x, crop_size.y);
for(uint32_t i = 0; i < boxes.shape()[1]; ++i)
{
Coordinates start = Coordinates(std::floor((*reinterpret_cast<const float *>(boxes(Coordinates(1, i)))) * (src.shape()[1] - 1) + 0.5f),
std::floor((*reinterpret_cast<const float *>(boxes(Coordinates(0, i)))) * (src.shape()[2] - 1) + 0.5f));
Coordinates end = Coordinates(std::floor((*reinterpret_cast<const float *>(boxes(Coordinates(3, i)))) * (src.shape()[1] - 1) + 0.5f),
std::floor((*reinterpret_cast<const float *>(boxes(Coordinates(2, i)))) * (src.shape()[2] - 1) + 0.5f));
SimpleTensor<float> cropped = crop_image(src, start, end, box_ind[i], extrapolation_value);
SimpleTensor<float> scaled = scale_image(cropped, scaled_image_shape, method, extrapolation_value);
std::copy_n(reinterpret_cast<float *>(scaled.data()), scaled.num_elements(), reinterpret_cast<float *>(out(Coordinates(0, 0, 0, i))));
}
return out;
}
template SimpleTensor<float> crop_and_resize(const SimpleTensor<float> &src, const SimpleTensor<float> &boxes, SimpleTensor<int32_t> box_ind,
Coordinates2D crop_size, InterpolationPolicy method, float extrapolation_value);
template SimpleTensor<float> crop_and_resize(const SimpleTensor<uint16_t> &src, const SimpleTensor<float> &boxes, SimpleTensor<int32_t> box_ind,
Coordinates2D crop_size, InterpolationPolicy method, float extrapolation_value);
template SimpleTensor<float> crop_and_resize(const SimpleTensor<uint32_t> &src, const SimpleTensor<float> &boxes, SimpleTensor<int32_t> box_ind,
Coordinates2D crop_size, InterpolationPolicy method, float extrapolation_value);
template SimpleTensor<float> crop_and_resize(const SimpleTensor<int16_t> &src, const SimpleTensor<float> &boxes, SimpleTensor<int32_t> box_ind,
Coordinates2D crop_size, InterpolationPolicy method, float extrapolation_value);
template SimpleTensor<float> crop_and_resize(const SimpleTensor<int32_t> &src, const SimpleTensor<float> &boxes, SimpleTensor<int32_t> box_ind,
Coordinates2D crop_size, InterpolationPolicy method, float extrapolation_value);
template SimpleTensor<float> crop_and_resize(const SimpleTensor<half> &src, const SimpleTensor<float> &boxes, SimpleTensor<int32_t> box_ind,
Coordinates2D crop_size, InterpolationPolicy method, float extrapolation_value);
template SimpleTensor<float> crop_and_resize(const SimpleTensor<uint8_t> &src, const SimpleTensor<float> &boxes, SimpleTensor<int32_t> box_ind,
Coordinates2D crop_size, InterpolationPolicy method, float extrapolation_value);
} // namespace reference
} // namespace validation
} // namespace test
} // namespace arm_compute
|