1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
/*
* Copyright (c) 2019-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "DFT.h"
#include "PadLayer.h"
#include "Permute.h"
#include "Reverse.h"
#include "SliceOperations.h"
#include <cmath>
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace reference
{
namespace
{
/** Performs an one dimensional DFT on a given real sequence.
*
* @param[in] src_ptr Pointer to the real input sequence.
* @param[in] N Size of input sequence.
* @param[out] dst_ptr Pointer to the complex output sequence.
* @param[out] K Size of the output sequence
*/
template <typename T>
void rdft_1d_step(const T *src_ptr, size_t N, T *dst_ptr, size_t K)
{
#if defined(_OPENMP)
#pragma omp parallel for
#endif /* _OPENMP */
for(unsigned int k = 0; k < K; ++k)
{
float Xr = 0;
float Xi = 0;
for(unsigned int n = 0; n < N; ++n)
{
const float alpha = (2 * M_PI * k * n) / N;
const float val_r = src_ptr[n];
// Assuming DFT from the R domain thus skipping imaginary calculations
Xr += val_r * cos(alpha);
Xi -= val_r * sin(alpha);
}
dst_ptr[k * 2] = Xr;
dst_ptr[k * 2 + 1] = Xi;
}
}
/** Performs an one dimensional DFT on a given complex sequence.
*
* @param[in] src_ptr Pointer to the complex input sequence.
* @param[out] dst_ptr Pointer to the complex output sequence.
* @param[in] N Size of the sequences
*/
template <typename T>
void dft_1d_step(const T *src_ptr, T *dst_ptr, size_t N)
{
#if defined(_OPENMP)
#pragma omp parallel for
#endif /* _OPENMP */
for(unsigned int k = 0; k < N; ++k)
{
float Xr = 0;
float Xi = 0;
for(unsigned int n = 0; n < N; ++n)
{
const float alpha = (2 * M_PI * k * n) / N;
const float val_r = src_ptr[2 * n];
const float val_i = src_ptr[2 * n + 1];
const float cos_alpha = cos(alpha);
const float sin_alpha = sin(alpha);
Xr += val_r * cos_alpha + val_i * sin_alpha;
Xi += val_i * cos_alpha - val_r * sin_alpha;
}
dst_ptr[k * 2] = Xr;
dst_ptr[k * 2 + 1] = Xi;
}
}
/** Performs an one dimensional inverse DFT on a given real sequence.
*
* @param[in] src_ptr Pointer to the real input sequence.
* @param[in] K Size of input sequence.
* @param[out] dst_ptr Pointer to the complex output sequence.
* @param[out] N Size of the output sequence
*/
template <typename T>
void irdft_1d_step(const T *src_ptr, size_t K, T *dst_ptr, size_t N)
{
const bool is_odd = N % 2;
const unsigned int Nleft = N - K;
const int tail_start = is_odd ? K - 1 : K - 2;
#if defined(_OPENMP)
#pragma omp parallel for
#endif /* _OPENMP */
for(unsigned int n = 0; n < N; ++n)
{
float xr = 0;
for(unsigned int k = 0; k < K; ++k)
{
const float alpha = (2 * M_PI * k * n) / N;
xr += src_ptr[2 * k] * cos(alpha) - src_ptr[2 * k + 1] * sin(alpha);
}
unsigned int j = tail_start;
for(unsigned int k = 0; k < Nleft; ++k)
{
const float alpha = (2 * M_PI * (k + K) * n) / N;
xr += src_ptr[2 * j] * cos(alpha) + src_ptr[2 * j + 1] * sin(alpha);
--j;
}
dst_ptr[n] = xr;
}
}
/** Performs an one dimensional inverse DFT on a given complex sequence.
*
* @param[in] src_ptr Pointer to the complex input sequence.
* @param[out] dst_ptr Pointer to the complex output sequence.
* @param[in] N Size of the sequences
*/
template <typename T>
void idft_1d_step(const T *src_ptr, T *dst_ptr, size_t N)
{
#if defined(_OPENMP)
#pragma omp parallel for
#endif /* _OPENMP */
for(unsigned int n = 0; n < N; ++n)
{
float xr = 0;
float xi = 0;
for(unsigned int k = 0; k < N; ++k)
{
const float alpha = (2 * M_PI * k * n) / N;
const float cos_alpha = cos(alpha);
const float sin_alpha = sin(alpha);
const float val_r = src_ptr[2 * k];
const float val_i = src_ptr[2 * k + 1];
xr += val_r * cos_alpha - val_i * sin_alpha;
xi += val_i * cos_alpha + val_r * sin_alpha;
}
dst_ptr[2 * n] = xr;
dst_ptr[2 * n + 1] = xi;
}
}
template <typename T>
SimpleTensor<T> rdft_1d_core(const SimpleTensor<T> &src, FFTDirection direction, bool is_odd)
{
// Performs only rdft
ARM_COMPUTE_ERROR_ON(direction == FFTDirection::Forward && src.num_channels() != 1);
ARM_COMPUTE_ERROR_ON(direction == FFTDirection::Inverse && src.num_channels() != 2);
const unsigned int inverse_tail = is_odd ? 1 : 0;
const unsigned int N = src.shape()[0];
const unsigned int K = direction == FFTDirection::Forward ? N / 2 + 1 : (N - 1) * 2 + inverse_tail;
const unsigned int num_channels = direction == FFTDirection::Forward ? 2 : 1;
TensorShape dst_shape = src.shape();
dst_shape.set(0, K);
SimpleTensor<T> dst(dst_shape, src.data_type(), num_channels);
const unsigned int upper_dims = src.shape().total_size_upper(1);
#if defined(_OPENMP)
#pragma omp parallel for
#endif /* _OPENMP */
for(unsigned int du = 0; du < upper_dims; ++du)
{
const T *src_row_ptr = src.data() + du * N * src.num_channels();
T *dst_row_ptr = dst.data() + du * K * dst.num_channels();
direction == FFTDirection::Forward ? rdft_1d_step(src_row_ptr, N, dst_row_ptr, K) : irdft_1d_step(src_row_ptr, N, dst_row_ptr, K);
}
return dst;
}
template <typename T>
SimpleTensor<T> dft_1d_core(const SimpleTensor<T> &src, FFTDirection direction)
{
ARM_COMPUTE_ERROR_ON(src.num_channels() != 2);
const unsigned int N = src.shape()[0];
SimpleTensor<T> dst(src.shape(), src.data_type(), src.num_channels());
const unsigned int upper_dims = src.shape().total_size_upper(1);
#if defined(_OPENMP)
#pragma omp parallel for
#endif /* _OPENMP */
for(unsigned int du = 0; du < upper_dims; ++du)
{
const T *src_row_ptr = src.data() + du * N * src.num_channels();
T *dst_row_ptr = dst.data() + du * N * dst.num_channels();
direction == FFTDirection::Forward ? dft_1d_step(src_row_ptr, dst_row_ptr, N) : idft_1d_step(src_row_ptr, dst_row_ptr, N);
}
return dst;
}
/** Scale a tensor by a given scaling factor.
*
* @param[in,out] tensor Tensor to scale.
* @param[in] scaling_factor Scaling to scale the tensor data with.
*/
template <typename T>
void scale(SimpleTensor<T> &tensor, T scaling_factor)
{
const int total_elements = tensor.num_elements() * tensor.num_channels();
T *data_ptr = tensor.data();
#if defined(_OPENMP)
#pragma omp parallel for
#endif /* _OPENMP */
for(int i = 0; i < total_elements; ++i)
{
data_ptr[i] /= scaling_factor;
}
}
/** Performs a complex element-wise multiplication with reduction across the channels axis.
*
* @param[in] input Input tensor.
* @param[in] weights Weights tensor.
*
* @return Output tensor.
*/
template <typename T>
SimpleTensor<T> complex_mul_and_reduce(const SimpleTensor<T> &input, const SimpleTensor<T> &weights)
{
const uint32_t W = input.shape().x();
const uint32_t H = input.shape().y();
const uint32_t Ci = input.shape().z();
const uint32_t Co = weights.shape()[3];
const uint32_t N = input.shape().total_size() / (W * H * Ci);
TensorShape output_shape = input.shape();
output_shape.set(2, Co);
SimpleTensor<T> dst(output_shape, input.data_type(), input.num_channels());
// MemSet dst memory to zero
std::memset(dst.data(), 0, dst.size());
for(uint32_t b = 0; b < N; ++b)
{
for(uint32_t co = 0; co < Co; ++co)
{
for(uint32_t ci = 0; ci < Ci; ++ci)
{
for(uint32_t h = 0; h < H; ++h)
{
for(uint32_t w = 0; w < W; ++w)
{
const uint32_t i_index = w + h * W + ci * H * W + b * H * W * Ci;
const uint32_t w_index = w + h * W + ci * H * W + co * H * W * Ci;
const uint32_t o_index = w + h * W + co * H * W + b * H * W * Co;
const Coordinates i_coords = index2coords(input.shape(), i_index);
const Coordinates w_coords = index2coords(weights.shape(), w_index);
const Coordinates o_coords = index2coords(dst.shape(), o_index);
auto i_ptr = static_cast<const T *>(input(i_coords));
auto w_ptr = static_cast<const T *>(weights(w_coords));
auto o_ptr = static_cast<T *>(dst(o_coords));
const T Rin = i_ptr[0];
const T Iin = i_ptr[1];
const T Rw = w_ptr[0];
const T Iw = w_ptr[1];
o_ptr[0] += Rin * Rw - Iin * Iw;
o_ptr[1] += Rin * Iw + Rw * Iin;
}
}
}
}
}
return dst;
}
} // namespace
template <typename T>
SimpleTensor<T> rdft_1d(const SimpleTensor<T> &src)
{
return rdft_1d_core(src, FFTDirection::Forward, false);
}
template <typename T>
SimpleTensor<T> ridft_1d(const SimpleTensor<T> &src, bool is_odd)
{
auto dst = rdft_1d_core(src, FFTDirection::Inverse, is_odd);
const T scaling_factor = dst.shape()[0];
scale(dst, scaling_factor);
return dst;
}
template <typename T>
SimpleTensor<T> dft_1d(const SimpleTensor<T> &src, FFTDirection direction)
{
auto dst = dft_1d_core(src, direction);
if(direction == FFTDirection::Inverse)
{
const T scaling_factor = dst.shape()[0];
scale(dst, scaling_factor);
}
return dst;
}
template <typename T>
SimpleTensor<T> rdft_2d(const SimpleTensor<T> &src)
{
ARM_COMPUTE_ERROR_ON(src.num_channels() != 1);
constexpr FFTDirection direction = FFTDirection::Forward;
auto first_pass = rdft_1d_core(src, direction, false);
auto transposed = permute(first_pass, PermutationVector(1U, 0U));
auto second_pass = dft_1d_core(transposed, direction);
return permute(second_pass, PermutationVector(1U, 0U));
}
template <typename T>
SimpleTensor<T> ridft_2d(const SimpleTensor<T> &src, bool is_odd)
{
ARM_COMPUTE_ERROR_ON(src.num_channels() != 2);
constexpr FFTDirection direction = FFTDirection::Inverse;
auto transposed = permute(src, PermutationVector(1U, 0U));
auto first_pass = dft_1d_core(transposed, direction);
auto transposed_2 = permute(first_pass, PermutationVector(1U, 0U));
auto dst = rdft_1d_core(transposed_2, direction, is_odd);
const T scaling_factor = dst.shape()[0] * dst.shape()[1];
scale(dst, scaling_factor);
return dst;
}
template <typename T>
SimpleTensor<T> dft_2d(const SimpleTensor<T> &src, FFTDirection direction)
{
ARM_COMPUTE_ERROR_ON(src.num_channels() != 2);
if(direction == FFTDirection::Forward)
{
auto first_pass = dft_1d_core(src, direction);
auto transposed = permute(first_pass, PermutationVector(1U, 0U));
auto second_pass = dft_1d_core(transposed, direction);
return permute(second_pass, PermutationVector(1U, 0U));
}
else
{
auto transposed = permute(src, PermutationVector(1U, 0U));
auto first_pass = dft_1d_core(transposed, direction);
auto transposed_2 = permute(first_pass, PermutationVector(1U, 0U));
auto dst = dft_1d_core(transposed_2, direction);
const T scaling_factor = dst.shape()[0] * dst.shape()[1];
scale(dst, scaling_factor);
return dst;
}
}
template <typename T>
SimpleTensor<T> conv2d_dft(const SimpleTensor<T> &src, const SimpleTensor<T> &w, const PadStrideInfo &conv_info)
{
// Pad input to full padding
const PaddingList padding_in = { { 0, w.shape()[0] - 1 }, { 0, w.shape()[1] - 1 } };
auto padded_src = pad_layer(src, padding_in);
// Flip weights
std::vector<uint32_t> axis_v = { 0, 1 };
SimpleTensor<uint32_t> axis{ TensorShape(2U), DataType::U32 };
std::copy(axis_v.begin(), axis_v.begin() + axis.shape().x(), axis.data());
auto flipped_w = reverse(w, axis);
// Pad weights to have the same size as input
const PaddingList paddings_w = { { 0, src.shape()[0] - 1 }, { 0, src.shape()[1] - 1 } };
auto padded_w = pad_layer(flipped_w, paddings_w);
// Transform input and weights to frequency domain
auto Fsrc = rdft_2d(padded_src);
auto Fw = rdft_2d(padded_w);
// Perform dot product
auto Fdst = complex_mul_and_reduce(Fsrc, Fw);
// Transform output back to frequency domain
auto conv_res = ridft_2d(Fdst);
// Slice output
const int start_left = w.shape().x() - conv_info.pad_left() - 1;
const int start_top = w.shape().y() - conv_info.pad_top() - 1;
const int end_right = conv_res.shape().x() - (w.shape().x() - conv_info.pad_right() - 1);
const int end_botton = conv_res.shape().y() - (w.shape().y() - conv_info.pad_bottom() - 1);
return slice(conv_res, Coordinates(start_left, start_top), Coordinates(end_right, end_botton));
}
template SimpleTensor<float> rdft_1d(const SimpleTensor<float> &src);
template SimpleTensor<float> ridft_1d(const SimpleTensor<float> &src, bool is_odd);
template SimpleTensor<float> dft_1d(const SimpleTensor<float> &src, FFTDirection direction);
template SimpleTensor<float> rdft_2d(const SimpleTensor<float> &src);
template SimpleTensor<float> ridft_2d(const SimpleTensor<float> &src, bool is_odd);
template SimpleTensor<float> dft_2d(const SimpleTensor<float> &src, FFTDirection direction);
template SimpleTensor<float> conv2d_dft(const SimpleTensor<float> &src, const SimpleTensor<float> &w, const PadStrideInfo &conv_info);
} // namespace reference
} // namespace validation
} // namespace test
} // namespace arm_compute
|