1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "DepthwiseConvolutionLayer.h"
#include "ConvolutionLayer.h"
#include "Utils.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/Utils.h"
#include "tests/validation/reference/UtilsQuantizedAsymm.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace reference
{
namespace
{
/** Perform a depthwise convolution for floating-point types
*
* - Three dimensions tensors
* - Third dimention is number of channels
* - Depths of input tensor and filter are equals
* - Padding, stride and output shape "match"
*
*/
template <typename T>
SimpleTensor<T> depthwise_convolution_fp(const SimpleTensor<T> &src, const SimpleTensor<T> &weights, const SimpleTensor<T> &biases, const TensorShape &dst_shape, const PadStrideInfo &conv_info,
unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
{
ARM_COMPUTE_UNUSED(out_quant_info);
SimpleTensor<T> dst{ dst_shape, src.data_type(), 1 };
// Compute reference
const int filter_width = weights.shape().x();
const int filter_height = weights.shape().y();
const int filter_plane = filter_width * filter_height;
const int input_width = src.shape().x();
const int input_height = src.shape().y();
const int input_depth = src.shape().z();
const int num_batches = src.shape().total_size() / (input_width * input_height * input_depth);
const int pad_left = conv_info.pad_left();
const int pad_top = conv_info.pad_top();
const float patch_width = (filter_width + (dilation.x() - 1) * (filter_width - 1));
const float patch_height = (filter_height + (dilation.y() - 1) * (filter_height - 1));
const int patch_half_width_floor = patch_width / 2;
const int patch_half_height_floor = patch_height / 2;
const auto patch_half_width_ceil = static_cast<int>(std::ceil(patch_width / 2));
const auto patch_half_height_ceil = static_cast<int>(std::ceil(patch_height / 2));
const int minimum_x = -pad_left + patch_half_width_floor;
const int minimum_y = -pad_top + patch_half_height_floor;
const int maximum_x = (conv_info.stride().first * (dst_shape[0] - 1));
const int maximum_y = (conv_info.stride().second * (dst_shape[1] - 1));
const T border_value(0);
int out_pos = 0;
for(int r = 0; r < num_batches; ++r)
{
for(int z = 0; z < input_depth; ++z)
{
for(unsigned int m = 0; m < depth_multiplier; ++m)
{
const int out_z = z * depth_multiplier + m;
for(int y = minimum_y; y <= minimum_y + maximum_y; y += conv_info.stride().second)
{
for(int x = minimum_x; x <= minimum_x + maximum_x; x += conv_info.stride().first)
{
Coordinates coords(static_cast<int>(x), static_cast<int>(y), static_cast<int>(z), static_cast<int>(r));
size_t filter_offset = filter_plane * out_z;
T val(0);
for(int j = y - patch_half_height_floor; j < y + patch_half_height_ceil; j += dilation.y())
{
for(int i = x - patch_half_width_floor; i < x + patch_half_width_ceil; i += dilation.x())
{
coords.set(0, i);
coords.set(1, j);
val += *(weights.data() + filter_offset) * tensor_elem_at(src, coords, BorderMode::CONSTANT, border_value);
++filter_offset;
}
}
dst[out_pos++] = saturate_cast<T>(val + *static_cast<const T *>(biases(Coordinates(out_z))));
}
}
}
}
}
return dst;
}
/** Perform a quantized depthwise convolution
*
* - Three dimensions tensors
* - Third dimention is number of channels
* - Depths of input tensor and filter are equals
* - Padding, stride and output shape "match"
* - QASYMM8/QASYMM8_SIGNED input, output
* - QASYMM8/QASYMM8_SIGNED or QSYMM8_PER_CHANNEL filter
*
*/
template <typename T, typename TW, typename TB>
SimpleTensor<T> depthwise_convolution_quantized(const SimpleTensor<T> &src, const SimpleTensor<TW> &weights, const SimpleTensor<int32_t> &biases, const TensorShape &dst_shape,
const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
{
// if no explicit quantization has been set you the same as src
const QuantizationInfo &dst_qinfo = out_quant_info.uniform().empty() ? src.quantization_info() : out_quant_info;
SimpleTensor<T> dst{ dst_shape, src.data_type(), 1, dst_qinfo };
// Create reference
const int input_offset = -src.quantization_info().uniform().offset;
const float input_scale = src.quantization_info().uniform().scale;
const int weights_offset = -weights.quantization_info().uniform().offset;
const int output_offset = dst_qinfo.uniform().offset;
const float output_scale = dst_qinfo.uniform().scale;
const std::vector<float> weights_scale_vec = weights.quantization_info().scale();
// Compute reference
const int filter_width = weights.shape().x();
const int filter_height = weights.shape().y();
const int filter_plane = filter_width * filter_height;
const int input_width = src.shape().x();
const int input_height = src.shape().y();
const int input_depth = src.shape().z();
const int num_batches = src.shape().total_size() / (input_width * input_height * input_depth);
const int pad_left = conv_info.pad_left();
const int pad_top = conv_info.pad_top();
const float patch_width = (filter_width + (dilation.x() - 1) * (filter_width - 1));
const float patch_height = (filter_height + (dilation.y() - 1) * (filter_height - 1));
const int patch_half_width_floor = patch_width / 2;
const int patch_half_height_floor = patch_height / 2;
const auto patch_half_width_ceil = static_cast<int>(std::ceil(patch_width / 2));
const auto patch_half_height_ceil = static_cast<int>(std::ceil(patch_height / 2));
const int minimum_x = -pad_left + patch_half_width_floor;
const int minimum_y = -pad_top + patch_half_height_floor;
const int maximum_x = (conv_info.stride().first * (dst_shape[0] - 1));
const int maximum_y = (conv_info.stride().second * (dst_shape[1] - 1));
const bool is_quantized_per_channel = is_data_type_quantized_per_channel(weights.data_type());
const int min = std::numeric_limits<T>::lowest();
const int max = std::numeric_limits<T>::max();
int out_pos = 0;
for(int r = 0; r < num_batches; ++r)
{
for(int z = 0; z < input_depth; ++z)
{
for(unsigned int m = 0; m < depth_multiplier; ++m)
{
const int out_z = z * depth_multiplier + m;
const int32_t bias_val = *static_cast<const int32_t *>(biases(Coordinates(out_z)));
int output_multiplier = 0;
int output_shift = 0;
const float weights_scale = (is_quantized_per_channel) ? weights_scale_vec[out_z] : weights_scale_vec[0];
const float multiplier = input_scale * weights_scale / output_scale;
arm_compute::quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
for(int y = minimum_y; y <= minimum_y + maximum_y; y += conv_info.stride().second)
{
for(int x = minimum_x; x <= minimum_x + maximum_x; x += conv_info.stride().first)
{
Coordinates coords(x, y, z, r);
int filter_offset = filter_plane * out_z;
int32_t val = 0;
for(int j = y - patch_half_height_floor; j < y + patch_half_height_ceil; j += dilation.y())
{
for(int i = x - patch_half_width_floor; i < x + patch_half_width_ceil; i += dilation.x())
{
coords.set(0, i);
coords.set(1, j);
const auto in_val = tensor_elem_at<T>(src, coords, BorderMode::CONSTANT, -input_offset);
const TW w_val = *(weights.data() + filter_offset);
val += (in_val + input_offset) * (w_val + weights_offset);
++filter_offset;
}
}
val += bias_val;
// Quantize down
val = quantize_down_scale_by_fixedpoint(val, output_multiplier, output_shift, output_offset, min, max);
// Store the result
dst[out_pos++] = val;
}
}
}
}
}
return dst;
}
} // namespace
template <>
SimpleTensor<float> depthwise_convolution(const SimpleTensor<float> &src, const SimpleTensor<float> &weights, const SimpleTensor<float> &biases, const TensorShape &dst_shape,
const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
{
return depthwise_convolution_fp(src, weights, biases, dst_shape, conv_info, depth_multiplier, dilation, out_quant_info);
}
template <>
SimpleTensor<half> depthwise_convolution(const SimpleTensor<half> &src, const SimpleTensor<half> &weights, const SimpleTensor<half> &biases, const TensorShape &dst_shape,
const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
{
return depthwise_convolution_fp(src, weights, biases, dst_shape, conv_info, depth_multiplier, dilation, out_quant_info);
}
template <>
SimpleTensor<uint8_t> depthwise_convolution(const SimpleTensor<uint8_t> &src, const SimpleTensor<uint8_t> &weights, const SimpleTensor<int32_t> &biases, const TensorShape &dst_shape,
const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
{
return depthwise_convolution_quantized<uint8_t, uint8_t, int32_t>(src, weights, biases, dst_shape, conv_info, depth_multiplier, dilation, out_quant_info);
}
template <>
SimpleTensor<uint8_t> depthwise_convolution(const SimpleTensor<uint8_t> &src, const SimpleTensor<int8_t> &weights, const SimpleTensor<int32_t> &biases, const TensorShape &dst_shape,
const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
{
return depthwise_convolution_quantized<uint8_t, int8_t, int32_t>(src, weights, biases, dst_shape, conv_info, depth_multiplier, dilation, out_quant_info);
}
template <>
SimpleTensor<int8_t> depthwise_convolution(const SimpleTensor<int8_t> &src, const SimpleTensor<int8_t> &weights, const SimpleTensor<int32_t> &biases, const TensorShape &dst_shape,
const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
{
return depthwise_convolution_quantized<int8_t, int8_t, int32_t>(src, weights, biases, dst_shape, conv_info, depth_multiplier, dilation, out_quant_info);
}
} // namespace reference
} // namespace validation
} // namespace test
} // namespace arm_compute
|