1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "GEMMLowp.h"
#include "arm_compute/core/Types.h"
#include "tests/validation/reference/UtilsQuantizedAsymm.h"
#include "support/ToolchainSupport.h"
#include <limits>
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace reference
{
namespace
{
template <typename T>
struct DataTypeExtractor
{
static DataType data_type()
{
DataType data_type = DataType::UNKNOWN;
if(std::is_same<T, int8_t>::value)
{
data_type = DataType::QASYMM8_SIGNED;
}
else if(std::is_same<T, uint8_t>::value)
{
data_type = DataType::QASYMM8;
}
else if(std::is_same<T, int16_t>::value)
{
data_type = DataType::QSYMM16;
}
return data_type;
}
};
template <typename TIn, typename TOut>
void quantize_down_scale(const SimpleTensor<TIn> *in, const SimpleTensor<TIn> *bias, SimpleTensor<TOut> *dst, int32_t result_offset, std::vector<int32_t> result_mult_int,
std::vector<int32_t> result_shift, int32_t min, int32_t max)
{
const int cols_in = in->shape().x();
const bool is_per_channel = result_mult_int.size() > 1;
#if defined(_OPENMP)
#pragma omp parallel for
#endif /* _OPENMP */
for(int i = 0; i < in->num_elements(); ++i)
{
int32_t result = ((*in)[i] + result_offset);
if(bias != nullptr)
{
result += (*bias)[i % cols_in];
}
result *= (is_per_channel) ? result_mult_int[i % cols_in] : result_mult_int[0];
result >>= (is_per_channel) ? result_shift[i % cols_in] : result_shift[0];
// Bounded ReLu
if(min != max)
{
result = std::max(min, std::min(max, result));
}
(*dst)[i] = static_cast<TOut>(std::max<TIn>(std::numeric_limits<TOut>::lowest(),
std::min<TIn>(std::numeric_limits<TOut>::max(), result)));
}
}
template <typename TIn, typename TOut>
void quantize_down_scale_by_fixedpoint(const SimpleTensor<TIn> *in, const SimpleTensor<TIn> *bias, SimpleTensor<TOut> *dst, std::vector<int32_t> result_fixedpoint_multiplier,
std::vector<int32_t> result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max)
{
const int cols_in = in->shape().x();
const bool is_per_channel = result_fixedpoint_multiplier.size() > 1;
#if defined(_OPENMP)
#pragma omp parallel for
#endif /* _OPENMP */
for(int i = 0; i < in->num_elements(); ++i)
{
TIn result = (*in)[i];
if(bias != nullptr)
{
result += (*bias)[i % cols_in];
}
// Fixed point multiplication
const int32_t multiplier = (is_per_channel) ? result_fixedpoint_multiplier[i % cols_in] : result_fixedpoint_multiplier[0];
const int32_t shift = (is_per_channel) ? result_shift[i % cols_in] : result_shift[0];
if(shift < 0)
{
result = asymm_int_mult(result * (1 << (-shift)), multiplier);
}
else
{
result = asymm_rounding_divide_by_pow2(asymm_int_mult(result, multiplier), shift);
}
result += result_offset_after_shift;
// Bounded ReLu
if(min != max)
{
result = std::max(min, std::min(max, result));
}
(*dst)[i] = static_cast<TOut>(std::max<TIn>(std::numeric_limits<TOut>::lowest(),
std::min<TIn>(std::numeric_limits<TOut>::max(), result)));
}
}
template <typename TIn, typename TOut>
void quantize_down_scale_by_float(const SimpleTensor<TIn> *in, const SimpleTensor<TIn> *bias, SimpleTensor<TOut> *dst, std::vector<float_t> result_real_multiplier,
int32_t result_offset, int32_t min, int32_t max)
{
const int cols_in = in->shape().x();
const bool is_per_channel = result_real_multiplier.size() > 1;
#if defined(_OPENMP)
#pragma omp parallel for
#endif /* _OPENMP */
for(int i = 0; i < in->num_elements(); ++i)
{
TIn result = (*in)[i];
if(bias != nullptr)
{
result += (*bias)[i % cols_in];
}
// Float multiplication
const float_t multiplier = (is_per_channel) ? result_real_multiplier[i % cols_in] : result_real_multiplier[0];
float_t result_f = static_cast<float_t>(result) * multiplier + static_cast<float_t>(result_offset);
result = static_cast<TIn>(support::cpp11::round(result_f));
// Bounded ReLu
if(min != max)
{
result = std::max(min, std::min(max, result));
}
(*dst)[i] = static_cast<TOut>(std::max<TIn>(std::numeric_limits<TOut>::lowest(),
std::min<TIn>(std::numeric_limits<TOut>::max(), result)));
}
}
} // namespace
template <typename T_out, typename T_in, typename T_in_1>
SimpleTensor<T_out> gemmlowp_matrix_multiply_core(const SimpleTensor<T_in> &a, const SimpleTensor<T_in_1> &b, TensorShape shape_c, int32_t a_offset, int32_t b_offset)
{
static_assert(std::is_same<typename std::decay<T_out>::type, int32_t>::value, "Only int32_t is allowed for the output");
DataType dt = std::is_same<T_out, int32_t>::value ? DataType::S32 : DataType::U32;
SimpleTensor<T_out> c(shape_c, dt);
const int K = a.shape().x();
const int M = a.shape().y();
const int N = b.shape().x();
const int D = a.shape().z(); // Number of matrices in a batch
const int a_stride_z = K * M;
// Do not slide the matrix B along the 3rd dimension in case matrix B has less than 3 dimensions
const int b_stride_z = b.shape().num_dimensions() > 2 ? N * K : 0;
const int c_stride_z = N * M;
std::vector<T_out> acc;
acc.resize(N);
for(int depth = 0; depth < D; ++depth)
{
const int base_addr_a = depth * a_stride_z;
const int base_addr_b = depth * b_stride_z;
const int base_addr_c = depth * c_stride_z;
for(int i = 0; i < M; ++i)
{
for(int j = 0; j < N; ++j)
{
acc[j] = 0;
}
for(int k = 0; k < K; ++k)
{
const T_out tmp_a = a_offset + static_cast<T_out>(a[base_addr_a + k + i * K]);
for(int j = 0; j < N; ++j)
{
const T_out tmp_b = b_offset + static_cast<T_out>(b[base_addr_b + j + k * N]);
const T_out mult_as_int = tmp_a * tmp_b;
acc[j] += mult_as_int;
}
}
for(int j = 0; j < N; ++j)
{
c[base_addr_c + j + i * N] = acc[j];
}
}
}
return c;
}
// used to validate assembly kernels which don't know anything about offsets
template <typename T1, typename T2, typename T3>
SimpleTensor<T1> gemmlowp(const SimpleTensor<T2> &a, const SimpleTensor<T3> &b, TensorShape shape_c)
{
return gemmlowp_matrix_multiply_core<T1, T2, T3>(a, b, shape_c, 0, 0);
}
template <typename TIn, typename TOut>
SimpleTensor<TOut> gemmlowp_quantize_down_scale(const SimpleTensor<TIn> &in, int32_t result_offset, std::vector<int32_t> result_mult_int, std::vector<int32_t> result_shift,
int32_t min, int32_t max)
{
SimpleTensor<TOut> dst(in.shape(), DataTypeExtractor<TOut>::data_type());
quantize_down_scale<TIn, TOut>(&in, nullptr, &dst, result_offset, result_mult_int, result_shift, min, max);
return dst;
}
template <typename TIn, typename TOut>
SimpleTensor<TOut> gemmlowp_quantize_down_scale(const SimpleTensor<TIn> &in, const SimpleTensor<TIn> &bias, int32_t result_offset, std::vector<int32_t> result_mult_int,
std::vector<int32_t> result_shift, int32_t min, int32_t max)
{
SimpleTensor<TOut> dst(in.shape(), DataTypeExtractor<TOut>::data_type());
quantize_down_scale<TIn, TOut>(&in, &bias, &dst, result_offset, result_mult_int, result_shift, min, max);
return dst;
}
template <typename TIn, typename TOut>
SimpleTensor<TOut> gemmlowp_quantize_down_scale_by_fixedpoint(const SimpleTensor<TIn> &in, std::vector<int32_t> result_fixedpoint_multiplier, std::vector<int32_t> result_shift,
int32_t result_offset_after_shift, int32_t min, int32_t max)
{
SimpleTensor<TOut> dst(in.shape(), DataTypeExtractor<TOut>::data_type());
quantize_down_scale_by_fixedpoint<TIn, TOut>(&in, nullptr, &dst, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max);
return dst;
}
template <typename TIn, typename TOut>
SimpleTensor<TOut> gemmlowp_quantize_down_scale_by_fixedpoint(const SimpleTensor<TIn> &in, const SimpleTensor<TIn> &bias, std::vector<int32_t> result_fixedpoint_multiplier,
std::vector<int32_t> result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max)
{
SimpleTensor<TOut> dst(in.shape(), DataTypeExtractor<TOut>::data_type());
quantize_down_scale_by_fixedpoint<TIn, TOut>(&in, &bias, &dst, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max);
return dst;
}
template <typename TIn, typename TOut>
SimpleTensor<TOut> gemmlowp_quantize_down_scale_by_float(const SimpleTensor<TIn> &in, const SimpleTensor<TIn> &bias,
std::vector<float_t> result_real_multiplier, int32_t result_offset, int32_t min, int32_t max)
{
SimpleTensor<TOut> dst(in.shape(), DataTypeExtractor<TOut>::data_type());
quantize_down_scale_by_float<TIn, TOut>(&in, &bias, &dst, result_real_multiplier, result_offset, min, max);
return dst;
}
template <typename TIn, typename TOut>
SimpleTensor<TOut> gemmlowp_quantize_down_scale_by_float(const SimpleTensor<TIn> &in,
std::vector<float_t> result_real_multiplier, int32_t result_offset, int32_t min, int32_t max)
{
SimpleTensor<TOut> dst(in.shape(), DataTypeExtractor<TOut>::data_type());
quantize_down_scale_by_float<TIn, TOut>(&in, nullptr, &dst, result_real_multiplier, result_offset, min, max);
return dst;
}
template SimpleTensor<uint8_t> gemmlowp_quantize_down_scale_by_float(const SimpleTensor<int32_t> &a, const SimpleTensor<int32_t> &b,
std::vector<float_t> result_real_multiplier, int32_t result_offset, int32_t min, int32_t max);
template SimpleTensor<uint8_t> gemmlowp_quantize_down_scale_by_float(const SimpleTensor<int32_t> &a,
std::vector<float_t> result_real_multiplier, int32_t result_offset, int32_t min, int32_t max);
template SimpleTensor<int8_t> gemmlowp_quantize_down_scale_by_float(const SimpleTensor<int32_t> &a, const SimpleTensor<int32_t> &b,
std::vector<float_t> result_real_multiplier, int32_t result_offset, int32_t min, int32_t max);
template SimpleTensor<int8_t> gemmlowp_quantize_down_scale_by_float(const SimpleTensor<int32_t> &a,
std::vector<float_t> result_real_multiplier, int32_t result_offset, int32_t min, int32_t max);
template SimpleTensor<uint8_t> gemmlowp_quantize_down_scale_by_fixedpoint(const SimpleTensor<int32_t> &a, std::vector<int32_t> result_fixedpoint_multiplier,
std::vector<int32_t> result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max);
template SimpleTensor<uint8_t> gemmlowp_quantize_down_scale_by_fixedpoint(const SimpleTensor<int32_t> &a, const SimpleTensor<int32_t> &b,
std::vector<int32_t> result_fixedpoint_multiplier,
std::vector<int32_t> result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max);
template SimpleTensor<int8_t> gemmlowp_quantize_down_scale_by_fixedpoint(const SimpleTensor<int32_t> &a, std::vector<int32_t> result_fixedpoint_multiplier,
std::vector<int32_t> result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max);
template SimpleTensor<int8_t> gemmlowp_quantize_down_scale_by_fixedpoint(const SimpleTensor<int32_t> &a, const SimpleTensor<int32_t> &b,
std::vector<int32_t> result_fixedpoint_multiplier,
std::vector<int32_t> result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max);
template SimpleTensor<int16_t> gemmlowp_quantize_down_scale_by_fixedpoint(const SimpleTensor<int32_t> &a, std::vector<int32_t> result_fixedpoint_multiplier,
std::vector<int32_t> result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max);
template SimpleTensor<int16_t> gemmlowp_quantize_down_scale_by_fixedpoint(const SimpleTensor<int32_t> &a, const SimpleTensor<int32_t> &b,
std::vector<int32_t> result_fixedpoint_multiplier,
std::vector<int32_t> result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max);
template SimpleTensor<uint8_t> gemmlowp_quantize_down_scale(const SimpleTensor<int32_t> &a, int32_t result_offset, std::vector<int32_t> result_mult_int,
std::vector<int32_t> result_shift, int32_t min, int32_t max);
template SimpleTensor<uint8_t> gemmlowp_quantize_down_scale(const SimpleTensor<int32_t> &a, const SimpleTensor<int32_t> &b, int32_t result_offset, std::vector<int32_t> result_mult_int,
std::vector<int32_t> result_shift, int32_t min, int32_t max);
template SimpleTensor<int8_t> gemmlowp_quantize_down_scale(const SimpleTensor<int32_t> &a, int32_t result_offset, std::vector<int32_t> result_mult_int,
std::vector<int32_t> result_shift, int32_t min, int32_t max);
template SimpleTensor<int8_t> gemmlowp_quantize_down_scale(const SimpleTensor<int32_t> &a, const SimpleTensor<int32_t> &b, int32_t result_offset, std::vector<int32_t> result_mult_int,
std::vector<int32_t> result_shift, int32_t min, int32_t max);
template SimpleTensor<int32_t> gemmlowp_matrix_multiply_core(const SimpleTensor<int8_t> &a, const SimpleTensor<int8_t> &b, TensorShape shape_c, int32_t a_offset, int32_t b_offset);
template SimpleTensor<int32_t> gemmlowp_matrix_multiply_core(const SimpleTensor<uint8_t> &a, const SimpleTensor<uint8_t> &b, TensorShape shape_c, int32_t a_offset, int32_t b_offset);
template SimpleTensor<int32_t> gemmlowp<int32_t, int8_t, int8_t>(const SimpleTensor<int8_t> &a, const SimpleTensor<int8_t> &b, TensorShape shape_c);
template SimpleTensor<int32_t> gemmlowp<int32_t, uint8_t, uint8_t>(const SimpleTensor<uint8_t> &a, const SimpleTensor<uint8_t> &b, TensorShape shape_c);
template SimpleTensor<int32_t> gemmlowp<int32_t, uint8_t, int8_t>(const SimpleTensor<uint8_t> &a, const SimpleTensor<int8_t> &b, TensorShape shape_c);
} // namespace reference
} // namespace validation
} // namespace test
} // namespace arm_compute
|