1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
/*
* Copyright (c) 2017-2019 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "HOGDescriptor.h"
#include "Derivative.h"
#include "Magnitude.h"
#include "Phase.h"
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace reference
{
namespace
{
template <typename T>
void hog_orientation_compute(const SimpleTensor<T> &mag, const SimpleTensor<T> &phase, std::vector<T> &bins, const HOGInfo &hog_info)
{
const Size2D &cell_size = hog_info.cell_size();
const size_t num_bins = hog_info.num_bins();
float phase_scale = (PhaseType::SIGNED == hog_info.phase_type() ? num_bins / 360.0f : num_bins / 180.0f);
phase_scale *= (PhaseType::SIGNED == hog_info.phase_type() ? 360.0f / 255.0f : 1.0f);
int row_idx = 0;
for(size_t yc = 0; yc < cell_size.height; ++yc)
{
for(size_t xc = 0; xc < cell_size.width; xc++)
{
const float mag_value = mag[(row_idx + xc)];
const float phase_value = phase[(row_idx + xc)] * phase_scale + 0.5f;
const float w1 = phase_value - floor(phase_value);
// The quantised phase is the histogram index [0, num_bins - 1]
// Check limit of histogram index. If hidx == num_bins, hidx = 0
const auto hidx = static_cast<unsigned int>(phase_value) % num_bins;
// Weighted vote between 2 bins
bins[hidx] += mag_value * (1.0f - w1);
bins[(hidx + 1) % num_bins] += mag_value * w1;
}
row_idx += cell_size.width;
}
}
template <typename T>
void hog_block_normalization_compute(SimpleTensor<T> &block, SimpleTensor<T> &desc, const HOGInfo &hog_info, uint32_t block_idx)
{
const int num_bins_per_block = desc.num_channels();
const HOGNormType norm_type = hog_info.normalization_type();
const Coordinates id = index2coord(desc.shape(), block_idx);
float sum = 0.0f;
// Calculate sum
for(int i = 0; i < num_bins_per_block; ++i)
{
const float val = block[i];
sum += (norm_type == HOGNormType::L1_NORM) ? std::fabs(val) : val * val;
}
// Calculate normalization scale
float scale = 1.0f / (std::sqrt(sum) + num_bins_per_block * 0.1f);
if(norm_type == HOGNormType::L2HYS_NORM)
{
// Reset sum
sum = 0.0f;
for(int i = 0; i < num_bins_per_block; ++i)
{
float val = block[i] * scale;
// Clip scaled input_value if over l2_hyst_threshold
val = fmin(val, hog_info.l2_hyst_threshold());
sum += val * val;
block[i] = val;
}
// We use the same constants of OpenCV
scale = 1.0f / (std::sqrt(sum) + 1e-3f);
}
for(int i = 0; i < num_bins_per_block; ++i)
{
block[i] *= scale;
reinterpret_cast<float *>(desc(id))[i] = block[i];
}
}
} // namespace
template <typename T, typename U, typename V>
void hog_orientation_binning(const SimpleTensor<T> &mag, const SimpleTensor<U> &phase, SimpleTensor<V> &hog_space, const HOGInfo &hog_info)
{
const Size2D &cell_size = hog_info.cell_size();
const size_t num_bins = hog_info.num_bins();
const size_t shape_width = hog_space.shape().x() * hog_info.cell_size().width;
const size_t shape_height = hog_space.shape().y() * hog_info.cell_size().height;
TensorShape cell_shape(cell_size.width, cell_size.height);
SimpleTensor<V> mag_cell(cell_shape, DataType::F32);
SimpleTensor<V> phase_cell(cell_shape, DataType::F32);
int cell_idx = 0;
int y_offset = 0;
// Traverse shape
for(auto sy = cell_size.height; sy <= shape_height; sy += cell_size.height)
{
int x_offset = 0;
for(auto sx = cell_size.width; sx <= shape_width; sx += cell_size.width)
{
int row_idx = 0;
int elem_idx = 0;
// Traverse cell
for(auto y = 0u; y < cell_size.height; ++y)
{
for(auto x = 0u; x < cell_size.width; ++x)
{
int shape_idx = x + row_idx + x_offset + y_offset;
mag_cell[elem_idx] = mag[shape_idx];
phase_cell[elem_idx] = phase[shape_idx];
elem_idx++;
}
row_idx += shape_width;
}
// Partition magnitude values into bins based on phase values
std::vector<V> bins(num_bins);
hog_orientation_compute(mag_cell, phase_cell, bins, hog_info);
for(size_t i = 0; i < num_bins; ++i)
{
hog_space[cell_idx * num_bins + i] = bins[i];
}
x_offset += cell_size.width;
cell_idx++;
}
y_offset += (cell_size.height * shape_width);
}
}
template <typename T>
void hog_block_normalization(SimpleTensor<T> &desc, const SimpleTensor<T> &hog_space, const HOGInfo &hog_info)
{
const Size2D cells_per_block = hog_info.num_cells_per_block();
const Size2D cells_per_block_stride = hog_info.num_cells_per_block_stride();
const Size2D &block_size = hog_info.block_size();
const Size2D &block_stride = hog_info.block_stride();
const size_t num_bins = hog_info.num_bins();
const size_t shape_width = hog_space.shape().x() * hog_info.cell_size().width;
const size_t shape_height = hog_space.shape().y() * hog_info.cell_size().height;
const size_t num_bins_per_block_x = cells_per_block.width * num_bins;
// Tensor representing single block
SimpleTensor<T> block(TensorShape{ 1u, 1u }, DataType::F32, cells_per_block.area() * num_bins);
uint32_t block_idx = 0;
int block_y_offset = 0;
// Traverse shape
for(auto sy = block_size.height; sy <= shape_height; sy += block_stride.height)
{
int block_x_offset = 0;
for(auto sx = block_size.width; sx <= shape_width; sx += block_stride.width)
{
int cell_y_offset = 0;
int elem_idx = 0;
// Traverse block
for(auto y = 0u; y < cells_per_block.height; ++y)
{
for(auto x = 0u; x < num_bins_per_block_x; ++x)
{
int idx = x + cell_y_offset + block_x_offset + block_y_offset;
block[elem_idx] = hog_space[idx];
elem_idx++;
}
cell_y_offset += hog_space.shape().x() * num_bins;
}
// Normalize block and write to descriptor
hog_block_normalization_compute(block, desc, hog_info, block_idx);
block_x_offset += cells_per_block_stride.width * num_bins;
block_idx++;
}
block_y_offset += cells_per_block_stride.height * num_bins * hog_space.shape().x();
}
}
template <typename T, typename U>
SimpleTensor<T> hog_descriptor(const SimpleTensor<U> &src, BorderMode border_mode, U constant_border_value, const HOGInfo &hog_info)
{
SimpleTensor<int16_t> grad_x;
SimpleTensor<int16_t> grad_y;
// Create tensor info for HOG descriptor
TensorInfo desc_info(hog_info, src.shape().x(), src.shape().y());
SimpleTensor<T> desc(desc_info.tensor_shape(), DataType::F32, desc_info.num_channels());
// Create HOG space tensor (num_cells_x, num_cells_y)
TensorShape hog_space_shape(src.shape().x() / hog_info.cell_size().width,
src.shape().y() / hog_info.cell_size().height);
// For each cell a histogram with a num_bins is created
TensorInfo info_hog_space(hog_space_shape, hog_info.num_bins(), DataType::F32);
SimpleTensor<T> hog_space(info_hog_space.tensor_shape(), DataType::F32, info_hog_space.num_channels());
// Calculate derivative
std::tie(grad_x, grad_y) = derivative<int16_t>(src, border_mode, constant_border_value, GradientDimension::GRAD_XY);
// For each cell create histogram based on magnitude and phase
hog_orientation_binning(magnitude(grad_x, grad_y, MagnitudeType::L2NORM),
phase(grad_x, grad_y, hog_info.phase_type()),
hog_space,
hog_info);
// Normalize histograms based on block size
hog_block_normalization(desc, hog_space, hog_info);
return desc;
}
template void hog_orientation_binning(const SimpleTensor<int16_t> &mag, const SimpleTensor<uint8_t> &phase, SimpleTensor<float> &hog_space, const HOGInfo &hog_info);
template void hog_block_normalization(SimpleTensor<float> &desc, const SimpleTensor<float> &hog_space, const HOGInfo &hog_info);
template SimpleTensor<float> hog_descriptor(const SimpleTensor<uint8_t> &src, BorderMode border_mode, uint8_t constant_border_value, const HOGInfo &hog_info);
} // namespace reference
} // namespace validation
} // namespace test
} // namespace arm_compute
|