1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
/*
* Copyright (c) 2017-2018 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "HOGMultiDetection.h"
#include "Derivative.h"
#include "HOGDescriptor.h"
#include "HOGDetector.h"
#include "Magnitude.h"
#include "Phase.h"
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace reference
{
namespace
{
void validate_models(const std::vector<HOGInfo> &models)
{
ARM_COMPUTE_ERROR_ON(0 == models.size());
for(size_t i = 1; i < models.size(); ++i)
{
ARM_COMPUTE_ERROR_ON_MSG(models[0].phase_type() != models[i].phase_type(),
"All HOG parameters must have the same phase type");
ARM_COMPUTE_ERROR_ON_MSG(models[0].normalization_type() != models[i].normalization_type(),
"All HOG parameters must have the same normalization_type");
ARM_COMPUTE_ERROR_ON_MSG((models[0].l2_hyst_threshold() != models[i].l2_hyst_threshold()) && (models[0].normalization_type() == arm_compute::HOGNormType::L2HYS_NORM),
"All HOG parameters must have the same l2 hysteresis threshold if you use L2 hysteresis normalization type");
}
}
} // namespace
void detection_windows_non_maxima_suppression(std::vector<DetectionWindow> &multi_windows, float min_distance)
{
const size_t num_candidates = multi_windows.size();
size_t num_detections = 0;
// Sort by idx_class first and by score second
std::sort(multi_windows.begin(), multi_windows.end(), [](const DetectionWindow & lhs, const DetectionWindow & rhs)
{
if(lhs.idx_class < rhs.idx_class)
{
return true;
}
if(rhs.idx_class < lhs.idx_class)
{
return false;
}
// idx_classes are equal so compare by score
if(lhs.score > rhs.score)
{
return true;
}
if(rhs.score > lhs.score)
{
return false;
}
return false;
});
const float min_distance_pow2 = min_distance * min_distance;
// Euclidean distance
for(size_t i = 0; i < num_candidates; ++i)
{
if(0.0f != multi_windows.at(i).score)
{
DetectionWindow cur;
cur.x = multi_windows.at(i).x;
cur.y = multi_windows.at(i).y;
cur.width = multi_windows.at(i).width;
cur.height = multi_windows.at(i).height;
cur.idx_class = multi_windows.at(i).idx_class;
cur.score = multi_windows.at(i).score;
// Store window
multi_windows.at(num_detections) = cur;
++num_detections;
const float xc = cur.x + cur.width * 0.5f;
const float yc = cur.y + cur.height * 0.5f;
for(size_t k = i + 1; k < (num_candidates) && (cur.idx_class == multi_windows.at(k).idx_class); ++k)
{
const float xn = multi_windows.at(k).x + multi_windows.at(k).width * 0.5f;
const float yn = multi_windows.at(k).y + multi_windows.at(k).height * 0.5f;
const float dx = std::fabs(xn - xc);
const float dy = std::fabs(yn - yc);
if(dx < min_distance && dy < min_distance)
{
const float d = dx * dx + dy * dy;
if(d < min_distance_pow2)
{
// Invalidate detection window
multi_windows.at(k).score = 0.0f;
}
}
}
}
}
multi_windows.resize(num_detections);
}
template <typename T>
std::vector<DetectionWindow> hog_multi_detection(const SimpleTensor<T> &src, BorderMode border_mode, T constant_border_value,
const std::vector<HOGInfo> &models, std::vector<std::vector<float>> descriptors,
unsigned int max_num_detection_windows, float threshold, bool non_maxima_suppression, float min_distance)
{
ARM_COMPUTE_ERROR_ON(descriptors.size() != models.size());
validate_models(models);
const size_t width = src.shape().x();
const size_t height = src.shape().y();
const size_t num_models = models.size();
// Initialize previous values
size_t prev_num_bins = models[0].num_bins();
Size2D prev_cell_size = models[0].cell_size();
Size2D prev_block_size = models[0].block_size();
Size2D prev_block_stride = models[0].block_stride();
std::vector<size_t> input_orient_bin;
std::vector<size_t> input_hog_detect;
std::vector<std::pair<size_t, size_t>> input_block_norm;
input_orient_bin.push_back(0);
input_hog_detect.push_back(0);
input_block_norm.emplace_back(0, 0);
// Iterate through the number of models and check if orientation binning
// and block normalization steps can be skipped
for(size_t i = 1; i < num_models; ++i)
{
size_t cur_num_bins = models[i].num_bins();
Size2D cur_cell_size = models[i].cell_size();
Size2D cur_block_size = models[i].block_size();
Size2D cur_block_stride = models[i].block_stride();
// Check if binning and normalization steps are required
if((cur_num_bins != prev_num_bins) || (cur_cell_size.width != prev_cell_size.width) || (cur_cell_size.height != prev_cell_size.height))
{
prev_num_bins = cur_num_bins;
prev_cell_size = cur_cell_size;
prev_block_size = cur_block_size;
prev_block_stride = cur_block_stride;
// Compute orientation binning and block normalization. Update input to process
input_orient_bin.push_back(i);
input_block_norm.emplace_back(i, input_orient_bin.size() - 1);
}
else if((cur_block_size.width != prev_block_size.width) || (cur_block_size.height != prev_block_size.height) || (cur_block_stride.width != prev_block_stride.width)
|| (cur_block_stride.height != prev_block_stride.height))
{
prev_block_size = cur_block_size;
prev_block_stride = cur_block_stride;
// Compute block normalization. Update input to process
input_block_norm.emplace_back(i, input_orient_bin.size() - 1);
}
// Update input to process for hog detector
input_hog_detect.push_back(input_block_norm.size() - 1);
}
size_t num_orient_bin = input_orient_bin.size();
size_t num_block_norm = input_block_norm.size();
size_t num_hog_detect = input_hog_detect.size();
std::vector<SimpleTensor<float>> hog_spaces(num_orient_bin);
std::vector<SimpleTensor<float>> hog_norm_spaces(num_block_norm);
// Calculate derivative
SimpleTensor<int16_t> grad_x;
SimpleTensor<int16_t> grad_y;
std::tie(grad_x, grad_y) = derivative<int16_t>(src, border_mode, constant_border_value, GradientDimension::GRAD_XY);
// Calculate magnitude and phase
SimpleTensor<int16_t> _mag = magnitude(grad_x, grad_y, MagnitudeType::L2NORM);
SimpleTensor<uint8_t> _phase = phase(grad_x, grad_y, models[0].phase_type());
// Calculate Tensors for the HOG space and orientation binning
for(size_t i = 0; i < num_orient_bin; ++i)
{
const size_t idx_multi_hog = input_orient_bin[i];
const size_t num_bins = models[idx_multi_hog].num_bins();
const size_t num_cells_x = width / models[idx_multi_hog].cell_size().width;
const size_t num_cells_y = height / models[idx_multi_hog].cell_size().height;
// TensorShape of hog space
TensorShape hog_space_shape(num_cells_x, num_cells_y);
// Initialise HOG space
TensorInfo info_hog_space(hog_space_shape, num_bins, DataType::F32);
hog_spaces.at(i) = SimpleTensor<float>(info_hog_space.tensor_shape(), DataType::F32, info_hog_space.num_channels());
// For each cell create histogram based on magnitude and phase
hog_orientation_binning(_mag, _phase, hog_spaces[i], models[idx_multi_hog]);
}
// Calculate Tensors for the normalized HOG space and block normalization
for(size_t i = 0; i < num_block_norm; ++i)
{
const size_t idx_multi_hog = input_block_norm[i].first;
const size_t idx_orient_bin = input_block_norm[i].second;
// Create tensor info for HOG descriptor
TensorInfo tensor_info(models[idx_multi_hog], src.shape().x(), src.shape().y());
hog_norm_spaces.at(i) = SimpleTensor<float>(tensor_info.tensor_shape(), DataType::F32, tensor_info.num_channels());
// Normalize histograms based on block size
hog_block_normalization(hog_norm_spaces[i], hog_spaces[idx_orient_bin], models[idx_multi_hog]);
}
std::vector<DetectionWindow> multi_windows;
// Calculate Detection Windows for HOG detector
for(size_t i = 0; i < num_hog_detect; ++i)
{
const size_t idx_block_norm = input_hog_detect[i];
// NOTE: Detection window stride fixed to block stride
const Size2D detection_window_stride = models[i].block_stride();
std::vector<DetectionWindow> windows = hog_detector(hog_norm_spaces[idx_block_norm], descriptors[i],
max_num_detection_windows, models[i], detection_window_stride, threshold, i);
multi_windows.insert(multi_windows.end(), windows.begin(), windows.end());
}
// Suppress Non-maxima detection windows
if(non_maxima_suppression)
{
detection_windows_non_maxima_suppression(multi_windows, min_distance);
}
return multi_windows;
}
template std::vector<DetectionWindow> hog_multi_detection(const SimpleTensor<uint8_t> &src, BorderMode border_mode, uint8_t constant_border_value,
const std::vector<HOGInfo> &models, std::vector<std::vector<float>> descriptors,
unsigned int max_num_detection_windows, float threshold, bool non_maxima_suppression, float min_distance);
} // namespace reference
} // namespace validation
} // namespace test
} // namespace arm_compute
|