1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "PixelWiseMultiplication.h"
#include "tests/validation/Helpers.h"
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace reference
{
template <class T>
struct is_floating_point
: std::integral_constant < bool,
std::is_same<float, typename std::remove_cv<T>::type>::value || std::is_same<half_float::half, typename std::remove_cv<T>::type>::value
|| std::is_same<double, typename std::remove_cv<T>::type>::value || std::is_same<long double, typename std::remove_cv<T>::type>::value >
{
};
namespace
{
/** Compute the result of `src1 * src2 * scale`. The result type always matches the type of @p src2.
*
* @param[in] src1 An input value. Data types supported: U8/S16/F16/F32.
* @param[in] src2 An input value. Data types supported: same as @p src1.
* @param[in] scale Scale to apply after multiplication.
* Scale must be positive and its value must be either 1/255 or 1/2^n where n is between 0 and 15.
* @param[in] convert_policy Overflow policy. Supported overflow policies: Wrap, Saturate
* @param[in] rounding_policy Rounding policy. Supported rounding modes: to zero, to nearest even.
*/
template <typename T1, typename T2, typename T3>
T3 mul(const T1 src1, const T2 src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy)
{
using intermediate_type = typename common_promoted_signed_type<T1, T2, T3>::intermediate_type;
const double val = static_cast<intermediate_type>(src1) * static_cast<intermediate_type>(src2) * static_cast<double>(scale);
if(is_floating_point<T3>::value)
{
const auto result = static_cast<T3>(val);
return result;
}
else
{
double rounded_val = 0;
switch(rounding_policy)
{
case(RoundingPolicy::TO_ZERO):
rounded_val = support::cpp11::trunc(val);
break;
case(RoundingPolicy::TO_NEAREST_UP):
rounded_val = round_half_up(val);
break;
case(RoundingPolicy::TO_NEAREST_EVEN):
rounded_val = round_half_even(val);
break;
default:
ARM_COMPUTE_ERROR("Unsupported rounding policy");
}
const auto result = static_cast<T3>((convert_policy == ConvertPolicy::SATURATE) ? saturate_cast<T3>(rounded_val) : rounded_val);
return result;
}
}
template <size_t dim>
struct BroadcastUnroll
{
template <typename T1, typename T2, typename T3>
static void unroll(const SimpleTensor<T1> &src1, const SimpleTensor<T2> &src2, SimpleTensor<T3> &dst,
float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
Coordinates &id_src1, Coordinates &id_src2, Coordinates &id_dst)
{
const bool src1_is_broadcast = (src1.shape()[dim - 1] != dst.shape()[dim - 1]);
const bool src2_is_broadcast = (src2.shape()[dim - 1] != dst.shape()[dim - 1]);
id_src1.set(dim - 1, 0);
id_src2.set(dim - 1, 0);
id_dst.set(dim - 1, 0);
for(size_t i = 0; i < dst.shape()[dim - 1]; ++i, ++id_dst[dim - 1])
{
BroadcastUnroll < dim - 1 >::unroll(src1, src2, dst, scale, convert_policy, rounding_policy, id_src1, id_src2, id_dst);
id_src1[dim - 1] += !src1_is_broadcast;
id_src2[dim - 1] += !src2_is_broadcast;
}
}
};
template <>
struct BroadcastUnroll<0>
{
template <typename T1, typename T2, typename T3>
static void unroll(const SimpleTensor<T1> &src1, const SimpleTensor<T2> &src2, SimpleTensor<T3> &dst,
float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
Coordinates &id_src1, Coordinates &id_src2, Coordinates &id_dst)
{
dst[coord2index(dst.shape(), id_dst)] = mul<T1, T2, T3>(src1[coord2index(src1.shape(), id_src1)], src2[coord2index(src2.shape(), id_src2)], scale, convert_policy, rounding_policy);
}
};
} // namespace
template <typename T1, typename T2, typename T3>
SimpleTensor<T3> pixel_wise_multiplication(const SimpleTensor<T1> &src1, const SimpleTensor<T2> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
DataType dt_out, const QuantizationInfo &qout)
{
ARM_COMPUTE_UNUSED(qout);
SimpleTensor<T3> dst(TensorShape::broadcast_shape(src1.shape(), src2.shape()), dt_out);
if(scale < 0)
{
ARM_COMPUTE_ERROR("Scale of pixel-wise multiplication must be non-negative");
}
Coordinates id_src1{};
Coordinates id_src2{};
Coordinates id_dst{};
BroadcastUnroll<Coordinates::num_max_dimensions>::unroll(src1, src2, dst, scale, convert_policy, rounding_policy, id_src1, id_src2, id_dst);
return dst;
}
template <>
SimpleTensor<uint8_t> pixel_wise_multiplication(const SimpleTensor<uint8_t> &src1, const SimpleTensor<uint8_t> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
DataType dt_out, const QuantizationInfo &qout)
{
SimpleTensor<uint8_t> dst(TensorShape::broadcast_shape(src1.shape(), src2.shape()), dt_out, 1, qout);
if(src1.data_type() == DataType::QASYMM8 && src2.data_type() == DataType::QASYMM8)
{
SimpleTensor<float> src1_tmp = convert_from_asymmetric(src1);
SimpleTensor<float> src2_tmp = convert_from_asymmetric(src2);
SimpleTensor<float> dst_tmp = pixel_wise_multiplication<float, float, float>(src1_tmp, src2_tmp, scale, convert_policy, rounding_policy, DataType::F32, qout);
dst = convert_to_asymmetric<uint8_t>(dst_tmp, qout);
}
else
{
if(scale < 0)
{
ARM_COMPUTE_ERROR("Scale of pixel-wise multiplication must be non-negative");
}
Coordinates id_src1{};
Coordinates id_src2{};
Coordinates id_dst{};
BroadcastUnroll<Coordinates::num_max_dimensions>::unroll(src1, src2, dst, scale, convert_policy, rounding_policy, id_src1, id_src2, id_dst);
}
return dst;
}
template <>
SimpleTensor<int16_t> pixel_wise_multiplication(const SimpleTensor<uint8_t> &src1, const SimpleTensor<uint8_t> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
DataType dt_out, const QuantizationInfo &qout)
{
SimpleTensor<int16_t> dst(TensorShape::broadcast_shape(src1.shape(), src2.shape()), dt_out, 1, qout);
if(src1.data_type() == DataType::QASYMM8 && src2.data_type() == DataType::QASYMM8)
{
SimpleTensor<float> src1_tmp = convert_from_asymmetric(src1);
SimpleTensor<float> src2_tmp = convert_from_asymmetric(src2);
SimpleTensor<float> dst_tmp = pixel_wise_multiplication<float, float, float>(src1_tmp, src2_tmp, scale, convert_policy, rounding_policy, DataType::F32, qout);
dst = convert_to_symmetric<int16_t>(dst_tmp, qout);
}
else
{
if(scale < 0)
{
ARM_COMPUTE_ERROR("Scale of pixel-wise multiplication must be non-negative");
}
Coordinates id_src1{};
Coordinates id_src2{};
Coordinates id_dst{};
BroadcastUnroll<Coordinates::num_max_dimensions>::unroll(src1, src2, dst, scale, convert_policy, rounding_policy, id_src1, id_src2, id_dst);
}
return dst;
}
template <>
SimpleTensor<int8_t> pixel_wise_multiplication(const SimpleTensor<int8_t> &src1, const SimpleTensor<int8_t> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
DataType dt_out, const QuantizationInfo &qout)
{
SimpleTensor<int8_t> dst(TensorShape::broadcast_shape(src1.shape(), src2.shape()), dt_out, 1, qout);
if(src1.data_type() == DataType::QASYMM8_SIGNED && src2.data_type() == DataType::QASYMM8_SIGNED)
{
SimpleTensor<float> src1_tmp = convert_from_asymmetric(src1);
SimpleTensor<float> src2_tmp = convert_from_asymmetric(src2);
SimpleTensor<float> dst_tmp = pixel_wise_multiplication<float, float, float>(src1_tmp, src2_tmp, scale, convert_policy, rounding_policy, DataType::F32, qout);
dst = convert_to_asymmetric<int8_t>(dst_tmp, qout);
}
else
{
if(scale < 0)
{
ARM_COMPUTE_ERROR("Scale of pixel-wise multiplication must be non-negative");
}
Coordinates id_src1{};
Coordinates id_src2{};
Coordinates id_dst{};
BroadcastUnroll<Coordinates::num_max_dimensions>::unroll(src1, src2, dst, scale, convert_policy, rounding_policy, id_src1, id_src2, id_dst);
}
return dst;
}
template <>
SimpleTensor<int16_t> pixel_wise_multiplication(const SimpleTensor<int16_t> &src1, const SimpleTensor<int16_t> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
DataType dt_out, const QuantizationInfo &qout)
{
SimpleTensor<int16_t> dst(TensorShape::broadcast_shape(src1.shape(), src2.shape()), dt_out, 1, qout);
if(src1.data_type() == DataType::QSYMM16 && src2.data_type() == DataType::QSYMM16)
{
SimpleTensor<float> src1_tmp = convert_from_symmetric<int16_t>(src1);
SimpleTensor<float> src2_tmp = convert_from_symmetric<int16_t>(src2);
SimpleTensor<float> dst_tmp = pixel_wise_multiplication<float, float, float>(src1_tmp, src2_tmp, scale, convert_policy, rounding_policy, DataType::F32, qout);
dst = convert_to_symmetric<int16_t>(dst_tmp, qout);
}
else
{
if(scale < 0)
{
ARM_COMPUTE_ERROR("Scale of pixel-wise multiplication must be non-negative");
}
Coordinates id_src1{};
Coordinates id_src2{};
Coordinates id_dst{};
BroadcastUnroll<Coordinates::num_max_dimensions>::unroll(src1, src2, dst, scale, convert_policy, rounding_policy, id_src1, id_src2, id_dst);
}
return dst;
}
// *INDENT-OFF*
// clang-format off
template SimpleTensor<int16_t> pixel_wise_multiplication(const SimpleTensor<uint8_t> &src1, const SimpleTensor<int16_t> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy, DataType dt_out, const QuantizationInfo &qout);
template SimpleTensor<int32_t> pixel_wise_multiplication(const SimpleTensor<int16_t> &src1, const SimpleTensor<int16_t> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy, DataType dt_out, const QuantizationInfo &qout);
template SimpleTensor<float> pixel_wise_multiplication(const SimpleTensor<float> &src1, const SimpleTensor<float> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy, DataType dt_out, const QuantizationInfo &qout);
template SimpleTensor<half_float::half> pixel_wise_multiplication(const SimpleTensor<half_float::half> &src1, const SimpleTensor<half_float::half> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy, DataType dt_out, const QuantizationInfo &qout);
// clang-format on
// *INDENT-ON*
} // namespace reference
} // namespace validation
} // namespace test
} // namespace arm_compute
|