1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
|
/*
* Copyright (c) 2018-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "Winograd.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/Utils.h"
#include "arm_compute/core/Types.h"
#include <algorithm>
#include <cmath>
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace reference
{
namespace
{
template <typename T>
void initialize_matrix_transform(SimpleTensor<T> &src, const Size2D &output_tile_size, const Size2D &kernel_size, WinogradTransformType winograd_transform_type)
{
// Winograd input transform matrices
static const std::array<float, 16> imatrix2x2_3x3 =
{
1.0f, 0.0f, -1.0f, 0.0f,
0.0f, 1.0f, 1.0f, 0.0f,
0.0f, -1.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f, -1.0f
};
static const std::array<float, 36> imatrix4x4_3x3 =
{
4.0f, 0.0f, -5.0f, 0.0f, 1.0f, 0.0f,
0.0f, -4.0f, -4.0f, 1.0f, 1.0f, 0.0f,
0.0f, 4.0f, -4.0f, -1.0f, 1.0f, 0.0f,
0.0f, -2.0f, -1.0f, 2.0f, 1.0f, 0.0f,
0.0f, 2.0f, -1.0f, -2.0f, 1.0f, 0.0f,
0.0f, 4.0f, 0.0f, -5.0f, 0.0f, 1.0f,
};
static const std::array<float, 64> imatrix4x4_5x5 =
{
1.f, 0.f, -21.f / 4.f, 0.f, 21.f / 4.f, 0.f, -1.f, 0.f,
0.f, 1.f, 1.f, -17.f / 4.f, -17.f / 4.f, 1.f, 1.f, 0.f,
0.f, -1.f, 1.f, 17.f / 4.f, -17.f / 4.f, -1.f, 1.f, 0.f,
0.f, 1.f / 2.f, 1.f / 4.f, -5.f / 2.f, -5.f / 4.f, 2.f, 1.f, 0.f,
0.f, -1.f / 2.f, 1.f / 4.f, 5.f / 2.f, -5.f / 4.f, -2.f, 1.f, 0.f,
0.f, 2.f, 4.f, -5.f / 2.f, -5.f, 1.f / 2.f, 1.f, 0.f,
0.f, -2.f, 4.f, 5.f / 2.f, -5.f, -1.f / 2.f, 1.f, 0.f,
0.f, -1.f, 0.f, 21.f / 4.f, 0.f, -21.f / 4.f, 0.f, 1.f
};
static const std::array<float, 64> imatrix2x1_7x7 =
{
-36.0f, 0.0f, 49.0f, 0.0f, -14.0f, 0.0f, 1.0f, 0.0f,
0.0f, -36.0f, 36.0f, 13.0f, -13.0f, -1.0f, 1.0f, 0.0f,
0.0f, 36.0f, 36.0f, -13.0f, -13.0f, 1.0f, 1.0f, 0.0f,
0.0f, -18.0f, 9.0f, 20.0f, -10.0f, -2.0f, 1.0f, 0.0f,
0.0f, 18.0f, 9.0f, -20.0f, -10.0f, 2.0f, 1.0f, 0.0f,
0.0f, -12.0f, 4.0f, 15.0f, -5.0f, -3.0f, 1.0f, 0.0f,
0.0f, 12.0f, 4.0f, -15.0f, -5.0f, 3.0f, 1.0f, 0.0f,
0.0f, -36.0f, 0.0f, 49.0f, 0.0f, -14.0f, 0.0f, 1.0f
};
// ------------------------------------------
// Winograd filter transform matrices
static const std::array<float, 12> fmatrix2x2_3x3 =
{
1.0f, 0.0f, 0.0f,
0.5f, 0.5f, 0.5f,
0.5f, -0.5f, 0.5f,
0.0f, 0.0f, 1.0f
};
static const std::array<float, 18> fmatrix4x4_3x3 =
{
0.25f, 0.0f, 0.0f,
-1.0f / 6.0f, -1.0f / 6.0f, -1.0f / 6.0f,
-1.0f / 6.0f, 1.0f / 6.0f, -1.0f / 6.0f,
1.0f / 24.0f, 1.0f / 12.0f, 1.0f / 6.0f,
1.0f / 24.0f, -1.0f / 12.0f, 1.0f / 6.0f,
0.0f, 0.0f, 1.0f
};
static const std::array<float, 40> fmatrix4x4_5x5 =
{
1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
-2.0f / 9.0f, -2.0f / 9.0f, -2.0f / 9.0f, -2.0f / 9.0f, -2.0f / 9.0f,
-2.0f / 9.0f, 2.0f / 9.0f, -2.0f / 9.0f, 2.0f / 9.0f, -2.0f / 9.0f,
1.0f / 90.0f, 1.0f / 45.0f, 2.0f / 45.0f, 4.0f / 45.0f, 8.0f / 45.0f,
1.0f / 90.0f, -1.0f / 45.0f, 2.0f / 45.0f, -4.0f / 45.0f, 8.0f / 45.0f,
4.0f / 45.0f, 2.0f / 45.0f, 1.0f / 45.0f, 1.0f / 90.0f, 1.0f / 180.0f,
4.0f / 45.0f, -2.0f / 45.0f, 1.0f / 45.0f, -1.0f / 90.0f, 1.0f / 180.0f,
0.0f, 0.0f, 0.0f, 0.0f, 1.0f
};
static const std::array<float, 56> fmatrix2x1_7x7 =
{
-1.0f / 36.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
1.0f / 48.0f, -1.0f / 48.0f, 1.0f / 48.0f, -1.0f / 48.0f, 1.0f / 48.0f, -1.0f / 48.0f, 1.0f / 48.0f,
1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f,
-1.0f / 120.0f, 1.0f / 60.0f, -1.0f / 30.0f, 1.0f / 15.0f, -2.0f / 15.0f, 4.0f / 15.0f, -8.0f / 15.0f,
-1.0f / 120.0f, -1.0f / 60.0f, -1.0f / 30.0f, -1.0f / 15.0f, -2.0f / 15.0f, -4.0f / 15.0f, -8.0f / 15.0f,
1.0f / 720.0f, -1.0f / 240.0f, 1.0f / 80.0f, -3.0f / 80.0f, 9.0f / 80.0f, -27.0f / 80.0f, 81.0f / 80.0f,
1.0f / 720.0f, 1.0f / 240.0f, 1.0f / 80.0f, 3.0f / 80.0f, 9.0f / 80.0f, 27.0f / 80.0f, 81.0f / 80.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f
};
// ------------------------------------------
// Winograd output transform matrices
static const std::array<float, 8> omatrix2x2_3x3 =
{
1.0f, 1.0f, 1.0f, 0.0f,
0.0f, 1.0f, -1.0f, -1.0f
};
static const std::array<float, 24> omatrix4x4_3x3 =
{
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f,
0.0f, 1.0f, -1.0f, 2.0f, -2.0f, 0.0f,
0.0f, 1.0f, 1.0f, 4.0f, 4.0f, 0.0f,
0.0f, 1.0f, -1.0f, 8.0f, -8.0f, 1.0f
};
static const std::array<float, 36> omatrix4x4_5x5 =
{
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 8.0f, 8.0f, 0.0f,
0.0f, 1.0f, -1.0f, 2.0f, -2.0f, 4.0f, -4.0f, 0.0f,
0.0f, 1.0f, 1.0f, 4.0f, 4.0f, 2.0f, 2.0f, 0.0f,
0.0f, 1.0f, -1.0f, 8.0f, -8.0f, 1.0f, -1.0f, 1.0f
};
static const std::array<float, 16> omatrix2x1_7x7 =
{
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f,
0.0f, -1.0f, 1.0f, -2.0f, 2.0f, -3.0f, 3.0f, 1.0f
};
// ------------------------------------------
using WinogradKey = std::tuple<std::pair<int, int>, std::pair<int, int>, WinogradTransformType>;
// Key = (Output tile size, Kernel size, Winograd transform type)
static std::map<WinogradKey, const float *> matrix_map =
{
{ WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(3, 3), WinogradTransformType::INPUT), imatrix2x2_3x3.data() },
{ WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(3, 3), WinogradTransformType::INPUT), imatrix4x4_3x3.data() },
{ WinogradKey(std::pair<int, int>(2, 1), std::pair<int, int>(3, 1), WinogradTransformType::INPUT), imatrix2x2_3x3.data() },
{ WinogradKey(std::pair<int, int>(4, 1), std::pair<int, int>(3, 1), WinogradTransformType::INPUT), imatrix4x4_3x3.data() },
{ WinogradKey(std::pair<int, int>(1, 2), std::pair<int, int>(1, 3), WinogradTransformType::INPUT), imatrix2x2_3x3.data() },
{ WinogradKey(std::pair<int, int>(1, 4), std::pair<int, int>(1, 3), WinogradTransformType::INPUT), imatrix4x4_3x3.data() },
{ WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5), WinogradTransformType::INPUT), imatrix4x4_5x5.data() },
{ WinogradKey(std::pair<int, int>(4, 1), std::pair<int, int>(5, 1), WinogradTransformType::INPUT), imatrix4x4_5x5.data() },
{ WinogradKey(std::pair<int, int>(2, 1), std::pair<int, int>(7, 1), WinogradTransformType::INPUT), imatrix2x1_7x7.data() },
{ WinogradKey(std::pair<int, int>(1, 2), std::pair<int, int>(1, 7), WinogradTransformType::INPUT), imatrix2x1_7x7.data() },
{ WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(7, 7), WinogradTransformType::INPUT), imatrix2x1_7x7.data() },
{ WinogradKey(std::pair<int, int>(1, 4), std::pair<int, int>(1, 5), WinogradTransformType::INPUT), imatrix4x4_5x5.data() },
{ WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(3, 3), WinogradTransformType::FILTER), fmatrix2x2_3x3.data() },
{ WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(3, 3), WinogradTransformType::FILTER), fmatrix4x4_3x3.data() },
{ WinogradKey(std::pair<int, int>(2, 1), std::pair<int, int>(3, 1), WinogradTransformType::FILTER), fmatrix2x2_3x3.data() },
{ WinogradKey(std::pair<int, int>(4, 1), std::pair<int, int>(3, 1), WinogradTransformType::FILTER), fmatrix4x4_3x3.data() },
{ WinogradKey(std::pair<int, int>(1, 2), std::pair<int, int>(1, 3), WinogradTransformType::FILTER), fmatrix2x2_3x3.data() },
{ WinogradKey(std::pair<int, int>(1, 4), std::pair<int, int>(1, 3), WinogradTransformType::FILTER), fmatrix4x4_3x3.data() },
{ WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5), WinogradTransformType::FILTER), fmatrix4x4_5x5.data() },
{ WinogradKey(std::pair<int, int>(4, 1), std::pair<int, int>(5, 1), WinogradTransformType::FILTER), fmatrix4x4_5x5.data() },
{ WinogradKey(std::pair<int, int>(2, 1), std::pair<int, int>(7, 1), WinogradTransformType::FILTER), fmatrix2x1_7x7.data() },
{ WinogradKey(std::pair<int, int>(1, 2), std::pair<int, int>(1, 7), WinogradTransformType::FILTER), fmatrix2x1_7x7.data() },
{ WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(7, 7), WinogradTransformType::FILTER), fmatrix2x1_7x7.data() },
{ WinogradKey(std::pair<int, int>(1, 4), std::pair<int, int>(1, 5), WinogradTransformType::FILTER), fmatrix4x4_5x5.data() },
{ WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(3, 3), WinogradTransformType::OUTPUT), omatrix2x2_3x3.data() },
{ WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(3, 3), WinogradTransformType::OUTPUT), omatrix4x4_3x3.data() },
{ WinogradKey(std::pair<int, int>(2, 1), std::pair<int, int>(3, 1), WinogradTransformType::OUTPUT), omatrix2x2_3x3.data() },
{ WinogradKey(std::pair<int, int>(4, 1), std::pair<int, int>(3, 1), WinogradTransformType::OUTPUT), omatrix4x4_3x3.data() },
{ WinogradKey(std::pair<int, int>(1, 2), std::pair<int, int>(1, 3), WinogradTransformType::OUTPUT), omatrix2x2_3x3.data() },
{ WinogradKey(std::pair<int, int>(1, 4), std::pair<int, int>(1, 3), WinogradTransformType::OUTPUT), omatrix4x4_3x3.data() },
{ WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5), WinogradTransformType::OUTPUT), omatrix4x4_5x5.data() },
{ WinogradKey(std::pair<int, int>(4, 1), std::pair<int, int>(5, 1), WinogradTransformType::OUTPUT), omatrix4x4_5x5.data() },
{ WinogradKey(std::pair<int, int>(2, 1), std::pair<int, int>(7, 1), WinogradTransformType::OUTPUT), omatrix2x1_7x7.data() },
{ WinogradKey(std::pair<int, int>(1, 2), std::pair<int, int>(1, 7), WinogradTransformType::OUTPUT), omatrix2x1_7x7.data() },
{ WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(7, 7), WinogradTransformType::OUTPUT), omatrix2x1_7x7.data() },
{ WinogradKey(std::pair<int, int>(1, 4), std::pair<int, int>(1, 5), WinogradTransformType::OUTPUT), omatrix4x4_5x5.data() },
};
// Find transformation matrix
std::map<WinogradKey, const float *>::iterator it;
it = matrix_map.find(WinogradKey(std::pair<int, int>(output_tile_size.width, output_tile_size.height),
std::pair<int, int>(kernel_size.width, kernel_size.height),
winograd_transform_type));
float const *matrix_values = nullptr;
if(it != matrix_map.end())
{
// Get matrix pointer
matrix_values = it->second;
}
else
{
ARM_COMPUTE_ERROR("Winograd configuration not supported");
}
// Copy values
std::copy(&matrix_values[0], &matrix_values[0] + src.num_elements(), &src[0]);
}
} // namespace
template <typename T>
SimpleTensor<T> winograd_input_transform(const SimpleTensor<T> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info)
{
ARM_COMPUTE_ERROR_ON(in.data_layout() != DataLayout::NCHW);
const PadStrideInfo conv_info = winograd_info.convolution_info;
const Size2D output_tile_size = winograd_info.output_tile_size;
const Size2D kernel_size = winograd_info.kernel_size;
SimpleTensor<T> out{ output_shape, in.data_type() };
// Calculate dimensions for the tile
const unsigned int tile_w = output_tile_size.width + kernel_size.width - 1;
const unsigned int tile_h = output_tile_size.height + kernel_size.height - 1;
// Get the maximum dimension from the tile size
const unsigned int tile_max_dim = std::max(tile_w, tile_h);
TensorShape tile_dims(tile_max_dim, tile_max_dim);
// Simple tensor for the input tile
SimpleTensor<T> src_tile{ tile_dims, in.data_type() };
// Simple tensor for the temporary tile
SimpleTensor<T> tmp_tile{ tile_dims, in.data_type() };
// Simple tensor for the output tile
SimpleTensor<T> dst_tile{ tile_dims, in.data_type() };
// Simple tensor for the transformation matrix
SimpleTensor<T> matrix{ tile_dims, in.data_type() };
// Simple tensor for the transformation matrix transposed
SimpleTensor<T> matrix_transposed{ tile_dims, in.data_type() };
// Initialize matrix for the input transform
initialize_matrix_transform(matrix, output_tile_size, kernel_size, WinogradTransformType::INPUT);
// Transpose matrix
transpose_matrix<T>(matrix, matrix_transposed);
const int in_w = in.shape().x();
const int in_h = in.shape().y();
const int in_d = in.shape().z();
const int out_d = out.shape().z();
const int num_batches = in.shape().total_size() / (in_w * in_h * in_d);
const int step_x = output_tile_size.width;
const int step_y = output_tile_size.height;
// Compute the number of output tiles along the x and y direction of size "output_tile_size"
const Size2D num_tiles = compute_winograd_convolution_tiles(Size2D(in_w, in_h),
kernel_size,
output_tile_size,
conv_info);
const int num_tiles_x = num_tiles.width;
const int num_tiles_y = num_tiles.height;
// In case of 1D convolution, the input tile has to be partially filled with zeros
int start_x_zero = 0;
int start_y_zero = 0;
int end_x_zero = 0;
int end_y_zero = 0;
if(output_tile_size.width == 1)
{
start_x_zero = 1;
start_y_zero = 0;
end_x_zero = tile_max_dim - 1;
end_y_zero = tile_max_dim;
}
else if(output_tile_size.height == 1)
{
start_x_zero = 0;
start_y_zero = 1;
end_x_zero = tile_max_dim;
end_y_zero = tile_max_dim - 1;
}
// Set the anchor and shape of the zeros area
const Coordinates anchor_zeros(start_x_zero, start_y_zero);
const TensorShape shape_zeros(end_x_zero, end_y_zero);
// If we have a vertical filter (i.e. 1x3, 1x5,..), we need to take the elements along the y direction (step = width of the output tile)
const int step_y_transf_tile = kernel_size.width == 1 ? tile_max_dim : 1;
ARM_COMPUTE_ERROR_ON((num_tiles_x * num_tiles_y) != static_cast<int>(out.shape().y()));
for(int b = 0; b < num_batches; ++b)
{
for(int z = 0; z < in_d; ++z)
{
for(int y = 0; y < num_tiles_y; ++y)
{
for(int x = 0; x < num_tiles_x; ++x)
{
int xi = x * step_x - conv_info.pad_left();
int yi = y * step_y - conv_info.pad_top();
// Get the tile from the input tensor
get_tile<T>(in, src_tile, Coordinates(xi, yi, z, b));
// Fill partially with zeros in case of 1D convolution
zeros<T>(src_tile, anchor_zeros, shape_zeros);
// Compute the transformation
matrix_multiply<T>(matrix, src_tile, tmp_tile);
matrix_multiply<T>(tmp_tile, matrix_transposed, dst_tile);
// Store the output tile across the channels
for(int i = 0; i < out_d; ++i)
{
int xo = z;
int yo = x + y * num_tiles_x;
out[coords2index(out.shape(), Coordinates(xo, yo, i, b))] = dst_tile[i * step_y_transf_tile];
}
}
}
}
}
return out;
}
template <typename T>
SimpleTensor<T> winograd_filter_transform(const SimpleTensor<T> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info)
{
ARM_COMPUTE_ERROR_ON_MSG(in.data_layout() != DataLayout::NCHW, "Only supported NCHW data format");
// Create reference
SimpleTensor<T> out{ output_shape, in.data_type(), 1 };
const Size2D output_tile_size = winograd_info.output_tile_size;
const Size2D kernel_size = winograd_info.kernel_size;
// Calculate dimensions for the tile
const unsigned int input_tile_w = output_tile_size.width + kernel_size.width - 1;
const unsigned int input_tile_h = output_tile_size.height + kernel_size.height - 1;
const unsigned int input_tile_area = input_tile_w * input_tile_h;
// Get the maximum dimension from the filter size
const unsigned int kernel_max_dim = std::max(kernel_size.width, kernel_size.height);
// Get the maximum dimension from the input tile
const unsigned int input_tile_max_dim = std::max(input_tile_w, input_tile_h);
// Simple tensor for the input tile
SimpleTensor<T> input_tile{ TensorShape(kernel_max_dim, kernel_max_dim), in.data_type(), 1 };
// Simple tensor for the transformation matrix
SimpleTensor<T> trans_matrix{ TensorShape(kernel_max_dim, input_tile_max_dim), in.data_type(), 1 };
// Simple tensor for the transformation matrix transpose
SimpleTensor<T> trans_matrix_transposed{ TensorShape(input_tile_max_dim, kernel_max_dim), in.data_type(), 1 };
// Simple tensor for the temporary tile
SimpleTensor<T> tmp_tile{ TensorShape(kernel_max_dim, input_tile_max_dim), in.data_type(), 1 };
// Simple tensor for the output tile
SimpleTensor<T> transf_tile{ TensorShape(input_tile_max_dim, input_tile_max_dim), in.data_type(), 1 };
// Initialize matrix for the filter transform
initialize_matrix_transform(trans_matrix, output_tile_size, kernel_size, WinogradTransformType::FILTER);
// Transpose the transformation matrix
transpose_matrix<T>(trans_matrix, trans_matrix_transposed);
const int num_channels = in.shape()[2];
const int num_filters = in.shape()[3];
const int num_batches = in.shape().total_size() / (kernel_size.area() * num_channels * num_filters);
// If we have a vertical filter (i.e. 1x3, 1x5,..), we need to take the elements along the y direction (step_y_transf_tile = width of the output tile)
const int step_y_transf_tile = kernel_size.width == 1 ? input_tile_max_dim : 1;
for(int n = 0; n < num_batches; ++n)
{
for(int w = 0; w < num_filters; ++w)
{
for(int z = 0; z < num_channels; ++z)
{
// Load the tile from the input tensor
get_tile<T>(in, input_tile, Coordinates(0, 0, z, w, n));
// First transformation
matrix_multiply<T>(trans_matrix, input_tile, tmp_tile);
// Second transformation
matrix_multiply<T>(tmp_tile, trans_matrix_transposed, transf_tile);
// Store the output tile across the channels
const int output_offset = w + z * num_filters;
// Store the values across the channels
for(unsigned int i = 0; i < input_tile_area; ++i)
{
out[output_offset + i * num_filters * num_channels] = transf_tile[i * step_y_transf_tile];
}
}
}
}
return out;
}
template <typename T>
SimpleTensor<T> winograd_output_transform(const SimpleTensor<T> &in, const SimpleTensor<T> &b, const TensorShape &output_shape, const WinogradInfo &winograd_info)
{
const PadStrideInfo conv_info = winograd_info.convolution_info;
const Size2D input_dimensions = winograd_info.input_dimensions;
const Size2D output_tile_size = winograd_info.output_tile_size;
const Size2D kernel_size = winograd_info.kernel_size;
// Create reference
SimpleTensor<T> out{ output_shape, in.data_type(), 1 };
// Calculate dimensions for the tiles
const unsigned int in_tile_w = output_tile_size.width + kernel_size.width - 1;
const unsigned int in_tile_h = output_tile_size.height + kernel_size.height - 1;
const unsigned int out_tile_w = output_tile_size.width;
const unsigned int out_tile_h = output_tile_size.height;
ARM_COMPUTE_ERROR_ON(in.shape()[2] != (in_tile_w * in_tile_h));
ARM_COMPUTE_ERROR_ON(in.shape()[0] != out.shape()[get_data_layout_dimension_index(winograd_info.output_data_layout, DataLayoutDimension::CHANNEL)]);
// Get the maximum dimension from the tile size
const unsigned int in_tile_max_dim = std::max(in_tile_w, in_tile_h);
const unsigned int out_tile_max_dim = std::max(output_tile_size.width, output_tile_size.height);
// Compute tile dimensions
// Input tile dimensions
TensorShape in_tile_dims(in_tile_max_dim, in_tile_max_dim);
// Output tile dimensions
TensorShape out_tile_dims(out_tile_max_dim, out_tile_max_dim);
// Transformation matrix dimensions
TensorShape tr_tile_dims(in_tile_max_dim, out_tile_max_dim);
// Create tensors
// Simple tensor for the input tile
SimpleTensor<T> input_tile{ in_tile_dims, in.data_type(), 1 };
// Simple tensor for the transformation matrix
SimpleTensor<T> trans_matrix{ tr_tile_dims, in.data_type(), 1 };
// Simple tensor for the transformation matrix transpose
SimpleTensor<T> trans_matrix_transposed{ TensorShape(tr_tile_dims[1], tr_tile_dims[0]), in.data_type(), 1 };
// Simple tensor for the temporary tile
SimpleTensor<T> tmp_tile{ tr_tile_dims, in.data_type(), 1 };
// Simple tensor for the output tile
SimpleTensor<T> output_tile{ out_tile_dims, in.data_type(), 1 };
// Initialize matrix for the output transform
initialize_matrix_transform(trans_matrix, output_tile_size, kernel_size, WinogradTransformType::OUTPUT);
// Transpose the transformation matrix
transpose_matrix<T>(trans_matrix, trans_matrix_transposed);
const int w_in = in.shape()[0];
const int h_in = in.shape()[1];
const int c_in = in.shape()[2];
const int w_out = out.shape()[0];
const int h_out = out.shape()[1];
const int c_out = out.shape()[2];
const int num_batches = in.shape().total_size() / (w_in * h_in * c_in);
// Input strides
const int stridey_in = w_in;
const int stridez_in = stridey_in * h_in;
const int stridew_in = stridez_in * c_in;
// Output strides
const int stridey_out = w_out;
const int stridez_out = stridey_out * h_out;
const int stridew_out = stridez_out * c_out;
// Compute the number of output tiles along the x and y direction of size "output_tile_size"
const Size2D num_tiles = compute_winograd_convolution_tiles(Size2D(input_dimensions.width, input_dimensions.height),
kernel_size,
output_tile_size,
conv_info);
const int num_tiles_x = num_tiles.width;
const int num_tiles_y = num_tiles.height;
ARM_COMPUTE_UNUSED(num_tiles_y);
ARM_COMPUTE_ERROR_ON(in.shape()[1] != static_cast<unsigned int>(num_tiles_x * num_tiles_y));
// If we have a vertical filter (i.e. 1x3, 1x5,..), we still need to take the elements along the x direction (step_y_transf_tile = 1)
const int step_y_transf_tile = kernel_size.width == 1 ? 1 : output_tile.shape()[0];
// Initialize with zeros the input tile
zeros<T>(input_tile, Coordinates(0, 0), input_tile.shape());
for(int n = 0; n < num_batches; ++n)
{
for(int y = 0; y < h_in; ++y)
{
for(int x = 0; x < w_in; ++x)
{
// Load the input tile tile across the channels of the input tensor
for(int z = 0; z < c_in; ++z)
{
input_tile[z] = in[x + (y * stridey_in) + (z * stridez_in) + (n * stridew_in)];
}
// First transformation
matrix_multiply<T>(trans_matrix, input_tile, tmp_tile);
// Second transformation
matrix_multiply<T>(tmp_tile, trans_matrix_transposed, output_tile);
// Store the output tile
const int xo = (y % num_tiles_x) * out_tile_w;
const int yo = (y / num_tiles_x) * out_tile_h;
const int zo = x;
const int output_offset = xo + (yo * stridey_out) + (zo * stridez_out) + (n * stridew_out);
for(int yi = 0; yi < static_cast<int>(out_tile_h); ++yi)
{
for(int xi = 0; xi < static_cast<int>(out_tile_w); ++xi)
{
// Check out-of-bound writes
if((xo + xi < w_out) && (yo + yi < h_out))
{
out[output_offset + yi * stridey_out + xi] = output_tile[xi + yi * step_y_transf_tile];
// Add bias
out[output_offset + yi * stridey_out + xi] += b[zo];
}
}
}
}
}
}
return out;
}
template SimpleTensor<float> winograd_filter_transform(const SimpleTensor<float> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info);
template SimpleTensor<float> winograd_input_transform(const SimpleTensor<float> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info);
template SimpleTensor<float> winograd_output_transform(const SimpleTensor<float> &in, const SimpleTensor<float> &b, const TensorShape &output_shape, const WinogradInfo &winograd_info);
template SimpleTensor<half> winograd_filter_transform(const SimpleTensor<half> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info);
template SimpleTensor<half> winograd_input_transform(const SimpleTensor<half> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info);
template SimpleTensor<half> winograd_output_transform(const SimpleTensor<half> &in, const SimpleTensor<half> &b, const TensorShape &output_shape, const WinogradInfo &winograd_info);
} // namespace reference
} // namespace validation
} // namespace test
} // namespace arm_compute
|