1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
|
/*
* Copyright (c) 2016-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_HELPERS_H
#define ARM_COMPUTE_HELPERS_H
#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/Steps.h"
#include "arm_compute/core/Strides.h"
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Window.h"
#include "support/MemorySupport.h"
#include <array>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
namespace arm_compute
{
class IKernel;
class ITensor;
class ITensorInfo;
/** Disable bitwise operations by default */
template <typename T>
struct enable_bitwise_ops
{
static constexpr bool value = false; /**< Disabled */
};
#ifndef DOXYGEN_SKIP_THIS
template <typename T>
typename std::enable_if<enable_bitwise_ops<T>::value, T>::type operator&(T lhs, T rhs)
{
using underlying_type = typename std::underlying_type<T>::type;
return static_cast<T>(static_cast<underlying_type>(lhs) & static_cast<underlying_type>(rhs));
}
#endif /* DOXYGEN_SKIP_THIS */
/** Helper function to create and return a unique_ptr pointed to a CL/GLES kernel object
* It also calls the kernel's configuration.
*
* @param[in] args All the arguments that need pass to kernel's configuration.
*
* @return A unique pointer pointed to a CL/GLES kernel object
*/
template <typename Kernel, typename... T>
std::unique_ptr<Kernel> create_configure_kernel(T &&... args)
{
std::unique_ptr<Kernel> k = arm_compute::support::cpp14::make_unique<Kernel>();
k->configure(std::forward<T>(args)...);
return k;
}
/** Helper function to create and return a unique_ptr pointed to a CL/GLES kernel object
*
* @return A unique pointer pointed to a Kernel kernel object
*/
template <typename Kernel>
std::unique_ptr<Kernel> create_kernel()
{
std::unique_ptr<Kernel> k = arm_compute::support::cpp14::make_unique<Kernel>();
return k;
}
namespace traits
{
/** Check if a type T is contained in a tuple Tuple of types */
template <typename T, typename Tuple>
struct is_contained;
template <typename T>
struct is_contained<T, std::tuple<>> : std::false_type
{
};
template <typename T, typename... Ts>
struct is_contained<T, std::tuple<T, Ts...>> : std::true_type
{
};
template <typename T, typename U, typename... Ts>
struct is_contained<T, std::tuple<U, Ts...>> : is_contained<T, std::tuple<Ts...>>
{
};
}
/** Computes bilinear interpolation using the pointer to the top-left pixel and the pixel's distance between
* the real coordinates and the smallest following integer coordinates. Input must be in single channel format.
*
* @param[in] pixel_ptr Pointer to the top-left pixel value of a single channel input.
* @param[in] stride Stride to access the bottom-left and bottom-right pixel values
* @param[in] dx Pixel's distance between the X real coordinate and the smallest X following integer
* @param[in] dy Pixel's distance between the Y real coordinate and the smallest Y following integer
*
* @note dx and dy must be in the range [0, 1.0]
*
* @return The bilinear interpolated pixel value
*/
template <typename T>
inline T delta_bilinear_c1(const T *pixel_ptr, size_t stride, float dx, float dy)
{
ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
const float dx1 = 1.0f - dx;
const float dy1 = 1.0f - dy;
const T a00 = *pixel_ptr;
const T a01 = *(pixel_ptr + 1);
const T a10 = *(pixel_ptr + stride);
const T a11 = *(pixel_ptr + stride + 1);
const float w1 = dx1 * dy1;
const float w2 = dx * dy1;
const float w3 = dx1 * dy;
const float w4 = dx * dy;
return static_cast<T>(a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4);
}
/** Computes bilinear interpolation for quantized input and output, using the pointer to the top-left pixel and the pixel's distance between
* the real coordinates and the smallest following integer coordinates. Input must be QASYMM8 and in single channel format.
*
* @param[in] pixel_ptr Pointer to the top-left pixel value of a single channel input.
* @param[in] stride Stride to access the bottom-left and bottom-right pixel values
* @param[in] dx Pixel's distance between the X real coordinate and the smallest X following integer
* @param[in] dy Pixel's distance between the Y real coordinate and the smallest Y following integer
* @param[in] iq_info Input QuantizationInfo
* @param[in] oq_info Output QuantizationInfo
*
* @note dx and dy must be in the range [0, 1.0]
*
* @return The bilinear interpolated pixel value
*/
inline uint8_t delta_bilinear_c1_quantized(const uint8_t *pixel_ptr, size_t stride, float dx, float dy, UniformQuantizationInfo iq_info, UniformQuantizationInfo oq_info)
{
ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
const float dx1 = 1.0f - dx;
const float dy1 = 1.0f - dy;
const float a00 = dequantize_qasymm8(*pixel_ptr, iq_info);
const float a01 = dequantize_qasymm8(*(pixel_ptr + 1), iq_info);
const float a10 = dequantize_qasymm8(*(pixel_ptr + stride), iq_info);
const float a11 = dequantize_qasymm8(*(pixel_ptr + stride + 1), iq_info);
const float w1 = dx1 * dy1;
const float w2 = dx * dy1;
const float w3 = dx1 * dy;
const float w4 = dx * dy;
float res = a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4;
return static_cast<uint8_t>(quantize_qasymm8(res, oq_info));
}
/** Computes bilinear interpolation for quantized input and output, using the pointer to the top-left pixel and the pixel's distance between
* the real coordinates and the smallest following integer coordinates. Input must be QASYMM8_SIGNED and in single channel format.
*
* @param[in] pixel_ptr Pointer to the top-left pixel value of a single channel input.
* @param[in] stride Stride to access the bottom-left and bottom-right pixel values
* @param[in] dx Pixel's distance between the X real coordinate and the smallest X following integer
* @param[in] dy Pixel's distance between the Y real coordinate and the smallest Y following integer
* @param[in] iq_info Input QuantizationInfo
* @param[in] oq_info Output QuantizationInfo
*
* @note dx and dy must be in the range [0, 1.0]
*
* @return The bilinear interpolated pixel value
*/
inline int8_t delta_bilinear_c1_quantized(const int8_t *pixel_ptr, size_t stride, float dx, float dy, UniformQuantizationInfo iq_info, UniformQuantizationInfo oq_info)
{
ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
const float dx1 = 1.0f - dx;
const float dy1 = 1.0f - dy;
const float a00 = dequantize_qasymm8_signed(*pixel_ptr, iq_info);
const float a01 = dequantize_qasymm8_signed(*(pixel_ptr + 1), iq_info);
const float a10 = dequantize_qasymm8_signed(*(pixel_ptr + stride), iq_info);
const float a11 = dequantize_qasymm8_signed(*(pixel_ptr + stride + 1), iq_info);
const float w1 = dx1 * dy1;
const float w2 = dx * dy1;
const float w3 = dx1 * dy;
const float w4 = dx * dy;
float res = a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4;
return static_cast<int8_t>(quantize_qasymm8_signed(res, oq_info));
}
/** Computes linear interpolation using the pointer to the top pixel and the pixel's distance between
* the real coordinates and the smallest following integer coordinates. Input must be in single channel format.
*
* @param[in] pixel_ptr Pointer to the top pixel value of a single channel input.
* @param[in] stride Stride to access the bottom pixel value
* @param[in] dy Pixel's distance between the Y real coordinate and the smallest Y following integer
*
* @note dy must be in the range [0, 1.0]
*
* @return The linear interpolated pixel value
*/
template <typename T>
inline T delta_linear_c1_y(const T *pixel_ptr, size_t stride, float dy)
{
ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
const float dy1 = 1.0f - dy;
const T a00 = *pixel_ptr;
const T a10 = *(pixel_ptr + stride);
const float w1 = dy1;
const float w3 = dy;
return static_cast<T>(a00 * w1 + a10 * w3);
}
/** Computes linear interpolation using the pointer to the left pixel and the pixel's distance between
* the real coordinates and the smallest following integer coordinates. Input must be in single channel format.
*
* @param[in] pixel_ptr Pointer to the left pixel value of a single channel input.
* @param[in] dx Pixel's distance between the X real coordinate and the smallest X following integer
*
* @note dx must be in the range [0, 1.0]
*
* @return The linear interpolated pixel value
*/
template <typename T>
inline T delta_linear_c1_x(const T *pixel_ptr, float dx)
{
ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
const T a00 = *pixel_ptr;
const T a01 = *(pixel_ptr + 1);
const float dx1 = 1.0f - dx;
const float w1 = dx1;
const float w2 = dx;
return static_cast<T>(a00 * w1 + a01 * w2);
}
/** Return the pixel at (x,y) using bilinear interpolation.
*
* @warning Only works if the iterator was created with an IImage
*
* @param[in] first_pixel_ptr Pointer to the first pixel of a single channel input.
* @param[in] stride Stride in bytes of the image;
* @param[in] x X position of the wanted pixel
* @param[in] y Y position of the wanted pixel
*
* @return The pixel at (x, y) using bilinear interpolation.
*/
template <typename T>
inline T pixel_bilinear_c1(const T *first_pixel_ptr, size_t stride, float x, float y)
{
ARM_COMPUTE_ERROR_ON(first_pixel_ptr == nullptr);
const int32_t xi = std::floor(x);
const int32_t yi = std::floor(y);
const float dx = x - xi;
const float dy = y - yi;
return delta_bilinear_c1(first_pixel_ptr + xi + yi * stride, stride, dx, dy);
}
/** Return the pixel at (x,y) using bilinear interpolation by clamping when out of borders. The image must be single channel input
*
* @warning Only works if the iterator was created with an IImage
*
* @param[in] first_pixel_ptr Pointer to the first pixel of a single channel image.
* @param[in] stride Stride in bytes of the image
* @param[in] width Width of the image
* @param[in] height Height of the image
* @param[in] x X position of the wanted pixel
* @param[in] y Y position of the wanted pixel
*
* @return The pixel at (x, y) using bilinear interpolation.
*/
template <typename T>
inline uint8_t pixel_bilinear_c1_clamp(const T *first_pixel_ptr, size_t stride, size_t width, size_t height, float x, float y)
{
ARM_COMPUTE_ERROR_ON(first_pixel_ptr == nullptr);
x = std::max(-1.f, std::min(x, static_cast<float>(width)));
y = std::max(-1.f, std::min(y, static_cast<float>(height)));
const float xi = std::floor(x);
const float yi = std::floor(y);
const float dx = x - xi;
const float dy = y - yi;
if(dx == 0.0f)
{
if(dy == 0.0f)
{
return static_cast<T>(first_pixel_ptr[static_cast<int32_t>(xi) + static_cast<int32_t>(yi) * stride]);
}
return delta_linear_c1_y(first_pixel_ptr + static_cast<int32_t>(xi) + static_cast<int32_t>(yi) * stride, stride, dy);
}
if(dy == 0.0f)
{
return delta_linear_c1_x(first_pixel_ptr + static_cast<int32_t>(xi) + static_cast<int32_t>(yi) * stride, dx);
}
return delta_bilinear_c1(first_pixel_ptr + static_cast<int32_t>(xi) + static_cast<int32_t>(yi) * stride, stride, dx, dy);
}
/** Return the pixel at (x,y) using area interpolation by clamping when out of borders. The image must be single channel U8
*
* @note The interpolation area depends on the width and height ration of the input and output images
* @note Currently average of the contributing pixels is calculated
*
* @param[in] first_pixel_ptr Pointer to the first pixel of a single channel U8 image.
* @param[in] stride Stride in bytes of the image
* @param[in] width Width of the image
* @param[in] height Height of the image
* @param[in] wr Width ratio among the input image width and output image width.
* @param[in] hr Height ratio among the input image height and output image height.
* @param[in] x X position of the wanted pixel
* @param[in] y Y position of the wanted pixel
*
* @return The pixel at (x, y) using area interpolation.
*/
inline uint8_t pixel_area_c1u8_clamp(const uint8_t *first_pixel_ptr, size_t stride, size_t width, size_t height, float wr, float hr, int x, int y);
/** Iterator updated by @ref execute_window_loop for each window element */
class Iterator
{
public:
/** Default constructor to create an empty iterator */
constexpr Iterator();
/** Create a container iterator for the metadata and allocation contained in the ITensor
*
* @param[in] tensor The tensor to associate to the iterator.
* @param[in] window The window which will be used to iterate over the tensor.
*/
Iterator(const ITensor *tensor, const Window &window);
/** Increment the iterator along the specified dimension of the step value associated to the dimension.
*
* @warning It is the caller's responsibility to call increment(dimension+1) when reaching the end of a dimension, the iterator will not check for overflow.
*
* @note When incrementing a dimension 'n' the coordinates of all the dimensions in the range (0,n-1) are reset. For example if you iterate over a 2D image, everytime you change row (dimension 1), the iterator for the width (dimension 0) is reset to its start.
*
* @param[in] dimension Dimension to increment
*/
void increment(size_t dimension);
/** Return the offset in bytes from the first element to the current position of the iterator
*
* @return The current position of the iterator in bytes relative to the first element.
*/
constexpr int offset() const;
/** Return a pointer to the current pixel.
*
* @warning Only works if the iterator was created with an ITensor.
*
* @return equivalent to buffer() + offset()
*/
constexpr uint8_t *ptr() const;
/** Move the iterator back to the beginning of the specified dimension.
*
* @param[in] dimension Dimension to reset
*/
void reset(size_t dimension);
private:
uint8_t *_ptr;
class Dimension
{
public:
constexpr Dimension()
: _dim_start(0), _stride(0)
{
}
int _dim_start;
int _stride;
};
std::array<Dimension, Coordinates::num_max_dimensions> _dims;
};
/** Iterate through the passed window, automatically adjusting the iterators and calling the lambda_functino for each element.
* It passes the x and y positions to the lambda_function for each iteration
*
* @param[in] w Window to iterate through.
* @param[in] lambda_function The function of type void(function)( const Coordinates & id ) to call at each iteration.
* Where id represents the absolute coordinates of the item to process.
* @param[in,out] iterators Tensor iterators which will be updated by this function before calling lambda_function.
*/
template <typename L, typename... Ts>
inline void execute_window_loop(const Window &w, L &&lambda_function, Ts &&... iterators);
/** Update window and padding size for each of the access patterns.
*
* First the window size is reduced based on all access patterns that are not
* allowed to modify the padding of the underlying tensor. Then the padding of
* the remaining tensors is increased to match the window.
*
* @param[in] win Window that is used by the kernel.
* @param[in] patterns Access patterns used to calculate the final window and padding.
*
* @return True if the window has been changed. Changes to the padding do not
* influence the returned value.
*/
template <typename... Ts>
bool update_window_and_padding(Window &win, Ts &&... patterns)
{
bool window_changed = false;
utility::for_each([&](const IAccessWindow & w)
{
window_changed |= w.update_window_if_needed(win);
},
patterns...);
bool padding_changed = false;
utility::for_each([&](IAccessWindow & w)
{
padding_changed |= w.update_padding_if_needed(win);
},
patterns...);
return window_changed;
}
/** Calculate the maximum window for a given tensor shape and border setting
*
* @param[in] valid_region Valid region object defining the shape of the tensor space for which the window is created.
* @param[in] steps (Optional) Number of elements processed for each step.
* @param[in] skip_border (Optional) If true exclude the border region from the window.
* @param[in] border_size (Optional) Border size.
*
* @return The maximum window the kernel can be executed on.
*/
Window calculate_max_window(const ValidRegion &valid_region, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize());
/** Calculate the maximum window for a given tensor shape and border setting
*
* @param[in] info Tensor info object defining the shape of the object for which the window is created.
* @param[in] steps (Optional) Number of elements processed for each step.
* @param[in] skip_border (Optional) If true exclude the border region from the window.
* @param[in] border_size (Optional) Border size.
*
* @return The maximum window the kernel can be executed on.
*/
inline Window calculate_max_window(const ITensorInfo &info, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize())
{
return calculate_max_window(info.valid_region(), steps, skip_border, border_size);
}
/** Calculate the maximum window used by a horizontal kernel for a given tensor shape and border setting
*
* @param[in] valid_region Valid region object defining the shape of the tensor space for which the window is created.
* @param[in] steps (Optional) Number of elements processed for each step.
* @param[in] skip_border (Optional) If true exclude the border region from the window.
* @param[in] border_size (Optional) Border size. The border region will be excluded from the window.
*
* @return The maximum window the kernel can be executed on.
*/
Window calculate_max_window_horizontal(const ValidRegion &valid_region, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize());
/** Calculate the maximum window used by a horizontal kernel for a given tensor shape and border setting
*
* @param[in] info Tensor info object defining the shape of the object for which the window is created.
* @param[in] steps (Optional) Number of elements processed for each step.
* @param[in] skip_border (Optional) If true exclude the border region from the window.
* @param[in] border_size (Optional) Border size.
*
* @return The maximum window the kernel can be executed on.
*/
inline Window calculate_max_window_horizontal(const ITensorInfo &info, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize())
{
return calculate_max_window_horizontal(info.valid_region(), steps, skip_border, border_size);
}
/** Calculate the maximum window for a given tensor shape and border setting. The window will also includes the border.
*
* @param[in] valid_region Valid region object defining the shape of the tensor space for which the window is created.
* @param[in] steps (Optional) Number of elements processed for each step.
* @param[in] border_size (Optional) Border size. The border region will be included in the window.
*
* @return The maximum window the kernel can be executed on.
*/
Window calculate_max_enlarged_window(const ValidRegion &valid_region, const Steps &steps = Steps(), BorderSize border_size = BorderSize());
/** Calculate the maximum window for a given tensor shape and border setting. The window will also includes the border.
*
* @param[in] info Tensor info object defining the shape of the object for which the window is created.
* @param[in] steps (Optional) Number of elements processed for each step.
* @param[in] border_size (Optional) Border size. The border region will be included in the window.
*
* @return The maximum window the kernel can be executed on.
*/
inline Window calculate_max_enlarged_window(const ITensorInfo &info, const Steps &steps = Steps(), BorderSize border_size = BorderSize())
{
return calculate_max_enlarged_window(info.valid_region(), steps, border_size);
}
/** Intersect multiple valid regions.
*
* @param[in] regions Valid regions.
*
* @return Intersection of all regions.
*/
template <typename... Ts>
ValidRegion intersect_valid_regions(const Ts &... regions)
{
auto intersect = [](const ValidRegion & r1, const ValidRegion & r2) -> ValidRegion
{
ValidRegion region;
for(size_t d = 0; d < std::min(r1.anchor.num_dimensions(), r2.anchor.num_dimensions()); ++d)
{
region.anchor.set(d, std::max(r1.anchor[d], r2.anchor[d]));
}
for(size_t d = 0; d < std::min(r1.shape.num_dimensions(), r2.shape.num_dimensions()); ++d)
{
region.shape.set(d, std::min(r1.shape[d], r2.shape[d]));
}
return region;
};
return utility::foldl(intersect, regions...);
}
/** Create a strides object based on the provided strides and the tensor dimensions.
*
* @param[in] info Tensor info object providing the shape of the tensor for unspecified strides.
* @param[in] stride_x Stride to be used in X dimension (in bytes).
* @param[in] fixed_strides Strides to be used in higher dimensions starting at Y (in bytes).
*
* @return Strides object based on the specified strides. Missing strides are
* calculated based on the tensor shape and the strides of lower dimensions.
*/
template <typename T, typename... Ts>
inline Strides compute_strides(const ITensorInfo &info, T stride_x, Ts &&... fixed_strides)
{
const TensorShape &shape = info.tensor_shape();
// Create strides object
Strides strides(stride_x, fixed_strides...);
for(size_t i = 1 + sizeof...(Ts); i < info.num_dimensions(); ++i)
{
strides.set(i, shape[i - 1] * strides[i - 1]);
}
return strides;
}
/** Create a strides object based on the tensor dimensions.
*
* @param[in] info Tensor info object used to compute the strides.
*
* @return Strides object based on element size and tensor shape.
*/
template <typename... Ts>
inline Strides compute_strides(const ITensorInfo &info)
{
return compute_strides(info, info.element_size());
}
/** Permutes given Dimensions according to a permutation vector
*
* @warning Validity of permutation is not checked
*
* @param[in, out] dimensions Dimensions to permute
* @param[in] perm Permutation vector
*/
template <typename T>
inline void permute(Dimensions<T> &dimensions, const PermutationVector &perm)
{
auto dimensions_copy = utility::make_array<Dimensions<T>::num_max_dimensions>(dimensions.begin(), dimensions.end());
for(unsigned int i = 0; i < perm.num_dimensions(); ++i)
{
T dimension_val = (perm[i] < dimensions.num_dimensions()) ? dimensions_copy[perm[i]] : 0;
dimensions.set(i, dimension_val);
}
}
/** Permutes given TensorShape according to a permutation vector
*
* @warning Validity of permutation is not checked
*
* @param[in, out] shape Shape to permute
* @param[in] perm Permutation vector
*/
inline void permute(TensorShape &shape, const PermutationVector &perm)
{
TensorShape shape_copy = shape;
for(unsigned int i = 0; i < perm.num_dimensions(); ++i)
{
size_t dimension_val = (perm[i] < shape.num_dimensions()) ? shape_copy[perm[i]] : 1;
shape.set(i, dimension_val, false); // Avoid changes in _num_dimension
}
}
/** Auto initialize the tensor info (shape, number of channels and data type) if the current assignment is empty.
*
* @param[in,out] info Tensor info used to check and assign.
* @param[in] shape New shape.
* @param[in] num_channels New number of channels.
* @param[in] data_type New data type
* @param[in] quantization_info (Optional) New quantization info
*
* @return True if the tensor info has been initialized
*/
bool auto_init_if_empty(ITensorInfo &info,
const TensorShape &shape,
int num_channels, DataType data_type,
QuantizationInfo quantization_info = QuantizationInfo());
/** Auto initialize the tensor info using another tensor info.
*
* @param info_sink Tensor info used to check and assign
* @param info_source Tensor info used to assign
*
* @return True if the tensor info has been initialized
*/
bool auto_init_if_empty(ITensorInfo &info_sink, const ITensorInfo &info_source);
/** Set the shape to the specified value if the current assignment is empty.
*
* @param[in,out] info Tensor info used to check and assign.
* @param[in] shape New shape.
*
* @return True if the shape has been changed.
*/
bool set_shape_if_empty(ITensorInfo &info, const TensorShape &shape);
/** Set the format, data type and number of channels to the specified value if
* the current data type is unknown.
*
* @param[in,out] info Tensor info used to check and assign.
* @param[in] format New format.
*
* @return True if the format has been changed.
*/
bool set_format_if_unknown(ITensorInfo &info, Format format);
/** Set the data type and number of channels to the specified value if
* the current data type is unknown.
*
* @param[in,out] info Tensor info used to check and assign.
* @param[in] data_type New data type.
*
* @return True if the data type has been changed.
*/
bool set_data_type_if_unknown(ITensorInfo &info, DataType data_type);
/** Set the data layout to the specified value if
* the current data layout is unknown.
*
* @param[in,out] info Tensor info used to check and assign.
* @param[in] data_layout New data layout.
*
* @return True if the data type has been changed.
*/
bool set_data_layout_if_unknown(ITensorInfo &info, DataLayout data_layout);
/** Set the quantization info to the specified value if
* the current quantization info is empty and the data type of asymmetric quantized type
*
* @param[in,out] info Tensor info used to check and assign.
* @param[in] quantization_info Quantization info
*
* @return True if the quantization info has been changed.
*/
bool set_quantization_info_if_empty(ITensorInfo &info, QuantizationInfo quantization_info);
/** Helper function to calculate the Valid Region for Scale.
*
* @param[in] src_info Input tensor info used to check.
* @param[in] dst_shape Shape of the output.
* @param[in] interpolate_policy Interpolation policy.
* @param[in] sampling_policy Sampling policy.
* @param[in] border_undefined True if the border is undefined.
*
* @return The corresponding valid region
*/
ValidRegion calculate_valid_region_scale(const ITensorInfo &src_info, const TensorShape &dst_shape,
InterpolationPolicy interpolate_policy, SamplingPolicy sampling_policy, bool border_undefined);
/** Convert a linear index into n-dimensional coordinates.
*
* @param[in] shape Shape of the n-dimensional tensor.
* @param[in] index Linear index specifying the i-th element.
*
* @return n-dimensional coordinates.
*/
inline Coordinates index2coords(const TensorShape &shape, int index);
/** Convert n-dimensional coordinates into a linear index.
*
* @param[in] shape Shape of the n-dimensional tensor.
* @param[in] coord N-dimensional coordinates.
*
* @return linead index
*/
inline int coords2index(const TensorShape &shape, const Coordinates &coord);
/** Get the index of the given dimension.
*
* @param[in] data_layout The data layout.
* @param[in] data_layout_dimension The dimension which this index is requested for.
*
* @return The int conversion of the requested data layout index.
*/
inline size_t get_data_layout_dimension_index(const DataLayout data_layout, const DataLayoutDimension data_layout_dimension);
/** Get the DataLayoutDimension of a given index and layout.
*
* @param[in] data_layout The data layout.
* @param[in] index The data layout index.
*
* @return The dimension which this index is requested for.
*/
inline DataLayoutDimension get_index_data_layout_dimension(const DataLayout data_layout, const size_t index);
/** Calculate the normalization dimension index for a given normalization type
*
* @param[in] layout Data layout of the input and output tensor
* @param[in] info Normalization info
*
* @return Normalization dimension index
*/
inline unsigned int get_normalization_dimension_index(DataLayout layout, const NormalizationLayerInfo &info)
{
const unsigned int width_idx = get_data_layout_dimension_index(layout, DataLayoutDimension::WIDTH);
const unsigned int channel_idx = get_data_layout_dimension_index(layout, DataLayoutDimension::CHANNEL);
return info.is_in_map() ? width_idx : channel_idx;
}
/** Calculate the number of output tiles required by Winograd Convolution layer. This utility function can be used by the Winograd input transform
* to know the number of tiles on the x and y direction
*
* @param[in] in_dims Spatial dimensions of the input tensor of convolution layer
* @param[in] kernel_size Kernel size
* @param[in] output_tile_size Size of a single output tile
* @param[in] conv_info Convolution info (i.e. pad, stride,...)
*
* @return the number of output tiles along the x and y directions of size "output_tile_size"
*/
inline Size2D compute_winograd_convolution_tiles(const Size2D &in_dims, const Size2D &kernel_size, const Size2D &output_tile_size, const PadStrideInfo &conv_info)
{
int num_tiles_x = std::ceil((in_dims.width - (kernel_size.width - 1) + conv_info.pad_left() + conv_info.pad_right()) / static_cast<float>(output_tile_size.width));
int num_tiles_y = std::ceil((in_dims.height - (kernel_size.height - 1) + conv_info.pad_top() + conv_info.pad_bottom()) / static_cast<float>(output_tile_size.height));
// Clamp in case we provide paddings but we have 1D convolution
num_tiles_x = std::min(num_tiles_x, static_cast<int>(in_dims.width));
num_tiles_y = std::min(num_tiles_y, static_cast<int>(in_dims.height));
return Size2D(num_tiles_x, num_tiles_y);
}
/** Wrap-around a number within the range 0 <= x < m
*
* @param[in] x Input value
* @param[in] m Range
*
* @return the wrapped-around number
*/
template <typename T>
inline T wrap_around(T x, T m)
{
return x >= 0 ? x % m : (x % m + m) % m;
}
/** Convert a dimension axis to the number of dimensions in the range [0, @p dim_axis]
* Handle negative axis, negative axis is used to specify axis from the end (e.g. -1 for the last axis).
*
* @param[in] dim_axis The last axis (inclusive) in the range [0, @p dim_axis]
* @param[in] num_dims The total number of dimensions
*
* @return The number of dimensions in the range [0, @p dim_axis]
*/
inline size_t dim_index_2_num_dims(int32_t dim_axis, int32_t num_dims);
/** Convert negative coordinates to positive in the range [0, num_dims_input]
*
* @param[out] coords Array of coordinates to be converted.
* @param[in] max_value Maximum value to be used when wrapping the negative values in coords
*/
inline Coordinates &convert_negative_axis(Coordinates &coords, int max_value)
{
for(unsigned int i = 0; i < coords.num_dimensions(); ++i)
{
coords[i] = wrap_around(coords[i], max_value);
}
return coords;
}
/** Given an integer value, this function returns the next power of two
*
* @param[in] x Input value
*
* @return the next power of two
*/
inline unsigned int get_next_power_two(unsigned int x)
{
// Decrement by 1
x--;
// Shift right by 1
x |= x >> 1u;
// Shift right by 2
x |= x >> 2u;
// Shift right by 4
x |= x >> 4u;
// Shift right by 8
x |= x >> 8u;
// Shift right by 16
x |= x >> 16u;
// Increment by 1
x++;
return x;
}
} // namespace arm_compute
#include "arm_compute/core/Helpers.inl"
#endif /*ARM_COMPUTE_HELPERS_H */
|