1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
/*
* Copyright (c) 2016-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Validate.h"
#include <cmath>
#include <numeric>
namespace arm_compute
{
inline size_t dim_index_2_num_dims(int32_t dim_axis, int32_t num_dims)
{
return static_cast<size_t>(wrap_around(dim_axis, num_dims)) + 1;
}
inline uint8_t pixel_area_c1u8_clamp(const uint8_t *first_pixel_ptr, size_t stride, size_t width, size_t height, float wr, float hr, int x, int y)
{
ARM_COMPUTE_ERROR_ON(first_pixel_ptr == nullptr);
// Calculate sampling position
float in_x = (x + 0.5f) * wr - 0.5f;
float in_y = (y + 0.5f) * hr - 0.5f;
// Get bounding box offsets
int x_from = std::floor(x * wr - 0.5f - in_x);
int y_from = std::floor(y * hr - 0.5f - in_y);
int x_to = std::ceil((x + 1) * wr - 0.5f - in_x);
int y_to = std::ceil((y + 1) * hr - 0.5f - in_y);
// Clamp position to borders
in_x = std::max(-1.f, std::min(in_x, static_cast<float>(width)));
in_y = std::max(-1.f, std::min(in_y, static_cast<float>(height)));
// Clamp bounding box offsets to borders
x_from = ((in_x + x_from) < -1) ? -1 : x_from;
y_from = ((in_y + y_from) < -1) ? -1 : y_from;
x_to = ((in_x + x_to) > width) ? (width - in_x) : x_to;
y_to = ((in_y + y_to) > height) ? (height - in_y) : y_to;
// Get pixel index
const int xi = std::floor(in_x);
const int yi = std::floor(in_y);
// Bounding box elements in each dimension
const int x_elements = (x_to - x_from + 1);
const int y_elements = (y_to - y_from + 1);
ARM_COMPUTE_ERROR_ON(x_elements == 0 || y_elements == 0);
// Sum pixels in area
int sum = 0;
for(int j = yi + y_from, je = yi + y_to; j <= je; ++j)
{
const uint8_t *ptr = first_pixel_ptr + j * stride + xi + x_from;
sum = std::accumulate(ptr, ptr + x_elements, sum);
}
// Return average
return sum / (x_elements * y_elements);
}
template <size_t dimension>
struct IncrementIterators
{
template <typename T, typename... Ts>
static void unroll(T &&it, Ts &&... iterators)
{
auto increment = [](T && it)
{
it.increment(dimension);
};
utility::for_each(increment, std::forward<T>(it), std::forward<Ts>(iterators)...);
}
static void unroll()
{
// End of recursion
}
};
template <size_t dim>
struct ForEachDimension
{
template <typename L, typename... Ts>
static void unroll(const Window &w, Coordinates &id, L &&lambda_function, Ts &&... iterators)
{
const auto &d = w[dim - 1];
for(auto v = d.start(); v < d.end(); v += d.step(), IncrementIterators < dim - 1 >::unroll(iterators...))
{
id.set(dim - 1, v);
ForEachDimension < dim - 1 >::unroll(w, id, lambda_function, iterators...);
}
}
};
template <>
struct ForEachDimension<0>
{
template <typename L, typename... Ts>
static void unroll(const Window &w, Coordinates &id, L &&lambda_function, Ts &&... iterators)
{
ARM_COMPUTE_UNUSED(w, iterators...);
lambda_function(id);
}
};
template <typename L, typename... Ts>
inline void execute_window_loop(const Window &w, L &&lambda_function, Ts &&... iterators)
{
w.validate();
for(unsigned int i = 0; i < Coordinates::num_max_dimensions; ++i)
{
ARM_COMPUTE_ERROR_ON(w[i].step() == 0);
}
Coordinates id;
ForEachDimension<Coordinates::num_max_dimensions>::unroll(w, id, std::forward<L>(lambda_function), std::forward<Ts>(iterators)...);
}
inline constexpr Iterator::Iterator()
: _ptr(nullptr), _dims()
{
}
inline Iterator::Iterator(const ITensor *tensor, const Window &win)
: Iterator()
{
ARM_COMPUTE_ERROR_ON(tensor == nullptr);
ARM_COMPUTE_ERROR_ON(tensor->info() == nullptr);
const ITensorInfo *info = tensor->info();
const Strides &strides = info->strides_in_bytes();
_ptr = tensor->buffer() + info->offset_first_element_in_bytes();
//Initialize the stride for each dimension and calculate the position of the first element of the iteration:
for(unsigned int n = 0; n < info->num_dimensions(); ++n)
{
_dims[n]._stride = win[n].step() * strides[n];
std::get<0>(_dims)._dim_start += strides[n] * win[n].start();
}
//Copy the starting point to all the dimensions:
for(unsigned int n = 1; n < Coordinates::num_max_dimensions; ++n)
{
_dims[n]._dim_start = std::get<0>(_dims)._dim_start;
}
ARM_COMPUTE_ERROR_ON_WINDOW_DIMENSIONS_GTE(win, info->num_dimensions());
}
inline void Iterator::increment(const size_t dimension)
{
ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions);
_dims[dimension]._dim_start += _dims[dimension]._stride;
for(unsigned int n = 0; n < dimension; ++n)
{
_dims[n]._dim_start = _dims[dimension]._dim_start;
}
}
inline constexpr int Iterator::offset() const
{
return _dims.at(0)._dim_start;
}
inline constexpr uint8_t *Iterator::ptr() const
{
return _ptr + _dims.at(0)._dim_start;
}
inline void Iterator::reset(const size_t dimension)
{
ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions - 1);
_dims[dimension]._dim_start = _dims[dimension + 1]._dim_start;
for(unsigned int n = 0; n < dimension; ++n)
{
_dims[n]._dim_start = _dims[dimension]._dim_start;
}
}
inline bool auto_init_if_empty(ITensorInfo &info,
const TensorShape &shape,
int num_channels,
DataType data_type,
QuantizationInfo quantization_info)
{
if(info.tensor_shape().total_size() == 0)
{
info.set_data_type(data_type);
info.set_num_channels(num_channels);
info.set_tensor_shape(shape);
info.set_quantization_info(quantization_info);
return true;
}
return false;
}
inline bool auto_init_if_empty(ITensorInfo &info_sink, const ITensorInfo &info_source)
{
if(info_sink.tensor_shape().total_size() == 0)
{
info_sink.set_data_type(info_source.data_type());
info_sink.set_num_channels(info_source.num_channels());
info_sink.set_tensor_shape(info_source.tensor_shape());
info_sink.set_quantization_info(info_source.quantization_info());
info_sink.set_data_layout(info_source.data_layout());
return true;
}
return false;
}
inline bool set_shape_if_empty(ITensorInfo &info, const TensorShape &shape)
{
if(info.tensor_shape().total_size() == 0)
{
info.set_tensor_shape(shape);
return true;
}
return false;
}
inline bool set_format_if_unknown(ITensorInfo &info, Format format)
{
if(info.data_type() == DataType::UNKNOWN)
{
info.set_format(format);
return true;
}
return false;
}
inline bool set_data_type_if_unknown(ITensorInfo &info, DataType data_type)
{
if(info.data_type() == DataType::UNKNOWN)
{
info.set_data_type(data_type);
return true;
}
return false;
}
inline bool set_data_layout_if_unknown(ITensorInfo &info, DataLayout data_layout)
{
if(info.data_layout() == DataLayout::UNKNOWN)
{
info.set_data_layout(data_layout);
return true;
}
return false;
}
inline bool set_quantization_info_if_empty(ITensorInfo &info, QuantizationInfo quantization_info)
{
if(info.quantization_info().empty() && (is_data_type_quantized_asymmetric(info.data_type())))
{
info.set_quantization_info(quantization_info);
return true;
}
return false;
}
inline Coordinates index2coords(const TensorShape &shape, int index)
{
int num_elements = shape.total_size();
ARM_COMPUTE_ERROR_ON_MSG(index < 0 || index >= num_elements, "Index has to be in [0, num_elements]!");
ARM_COMPUTE_ERROR_ON_MSG(num_elements == 0, "Cannot create coordinate from empty shape!");
Coordinates coord{ 0 };
for(int d = shape.num_dimensions() - 1; d >= 0; --d)
{
num_elements /= shape[d];
coord.set(d, index / num_elements);
index %= num_elements;
}
return coord;
}
inline int coords2index(const TensorShape &shape, const Coordinates &coord)
{
int num_elements = shape.total_size();
ARM_COMPUTE_UNUSED(num_elements);
ARM_COMPUTE_ERROR_ON_MSG(num_elements == 0, "Cannot create linear index from empty shape!");
int index = 0;
int stride = 1;
for(unsigned int d = 0; d < coord.num_dimensions(); ++d)
{
index += coord[d] * stride;
stride *= shape[d];
}
return index;
}
inline size_t get_data_layout_dimension_index(const DataLayout data_layout, const DataLayoutDimension data_layout_dimension)
{
ARM_COMPUTE_ERROR_ON_MSG(data_layout == DataLayout::UNKNOWN, "Cannot retrieve the dimension index for an unknown layout!");
/* Return the index based on the data layout
* [N C H W]
* [3 2 1 0]
* [N H W C]
*/
switch(data_layout_dimension)
{
case DataLayoutDimension::CHANNEL:
return (data_layout == DataLayout::NCHW) ? 2 : 0;
break;
case DataLayoutDimension::HEIGHT:
return (data_layout == DataLayout::NCHW) ? 1 : 2;
break;
case DataLayoutDimension::WIDTH:
return (data_layout == DataLayout::NCHW) ? 0 : 1;
break;
case DataLayoutDimension::BATCHES:
return 3;
break;
default:
break;
}
ARM_COMPUTE_ERROR("Data layout index not supported!");
}
inline DataLayoutDimension get_index_data_layout_dimension(const DataLayout data_layout, const size_t index)
{
ARM_COMPUTE_ERROR_ON_MSG(data_layout == DataLayout::UNKNOWN, "Cannot retrieve the dimension index for an unknown layout!");
/* Return the index based on the data layout
* [N C H W]
* [3 2 1 0]
* [N H W C]
*/
switch(index)
{
case 0:
return (data_layout == DataLayout::NCHW) ? DataLayoutDimension::WIDTH : DataLayoutDimension::CHANNEL;
break;
case 1:
return (data_layout == DataLayout::NCHW) ? DataLayoutDimension::HEIGHT : DataLayoutDimension::WIDTH;
break;
case 2:
return (data_layout == DataLayout::NCHW) ? DataLayoutDimension::CHANNEL : DataLayoutDimension::HEIGHT;
break;
case 3:
return DataLayoutDimension::BATCHES;
break;
default:
ARM_COMPUTE_ERROR("Index value not supported!");
break;
}
}
} // namespace arm_compute
|