1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
/*
* Copyright (c) 2016-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_NEMATH_H
#define ARM_COMPUTE_NEMATH_H
#include <arm_neon.h>
#include <array>
namespace arm_compute
{
/** Calculate floor of a vector.
*
* @param[in] val Input vector value in F32 format.
*
* @return The calculated floor vector.
*/
float32x4_t vfloorq_f32(float32x4_t val);
/** Calculate round value of a vector to nearest with ties to even.
*
* @param[in] val Input vector value in F32 format.
*
* @return The calculated round vector.
*/
float32x4_t vroundq_rte_f32(float32x4_t val);
/** Calculate inverse square root.
*
* @param[in] x Input value.
*
* @return The calculated inverse square root.
*/
float32x2_t vinvsqrt_f32(float32x2_t x);
/** Calculate inverse square root.
*
* @param[in] x Input value.
*
* @return The calculated inverse square root.
*/
float32x4_t vinvsqrtq_f32(float32x4_t x);
/** Calculate reciprocal.
*
* @param[in] x Input value.
*
* @return The calculated reciprocal.
*/
float32x2_t vinv_f32(float32x2_t x);
/** Calculate reciprocal.
*
* @param[in] x Input value.
*
* @return The calculated reciprocal.
*/
float32x4_t vinvq_f32(float32x4_t x);
/** Perform a 7th degree polynomial approximation using Estrin's method.
*
* @param[in] x Input vector value in F32 format.
* @param[in] coeffs Polynomial coefficients table.
*
* @return The calculated approximation.
*/
float32x4_t vtaylor_polyq_f32(float32x4_t x, const std::array<float32x4_t, 8> &coeffs);
/** Calculate exponential
*
* @param[in] x Input vector value in F32 format.
*
* @return The calculated exponent.
*/
float32x4_t vexpq_f32(float32x4_t x);
/** Calculate logarithm
*
* @param[in] x Input vector value in F32 format.
*
* @return The calculated logarithm.
*/
float32x4_t vlogq_f32(float32x4_t x);
/** Calculate hyperbolic tangent.
*
* tanh(x) = (e^2x - 1)/(e^2x + 1)
*
* @note We clamp x to [-5,5] to avoid overflowing issues.
*
* @param[in] val Input vector value in F32 format.
*
* @return The calculated Hyperbolic Tangent.
*/
float32x4_t vtanhq_f32(float32x4_t val);
/** Calculate n power of a number.
*
* pow(x,n) = e^(n*log(x))
*
* @param[in] val Input vector value in F32 format.
* @param[in] n Powers to raise the input to.
*
* @return The calculated power.
*/
float32x4_t vpowq_f32(float32x4_t val, float32x4_t n);
/** Round to the nearest division by a power-of-two using exponent
*
* @note This function calculates the following expression: (x + 2^n -1 ) / 2^n where n = exponent
*
* @param[in] x Vector of 4 elements
* @param[in] exponent Vector of 4 elements with integer value used to round to nearest division by a power-of-two
*
* @return the nearest division by a power-of-two using exponent
*/
int32x4_t rounding_divide_by_pow2(int32x4_t x, int32x4_t exponent);
/** Round to the nearest division by a power-of-two using exponent
*
* @note This function calculates the following expression: (x + 2^n -1 ) / 2^n where n = exponent
*
* @param[in] x Vector of 4 elements
* @param[in] exponent Integer value used to round to nearest division by a power-of-two
*
* @return the nearest division by a power-of-two using exponent
*/
int32x4_t rounding_divide_by_pow2(int32x4_t x, int exponent);
/** Round to the nearest division by a power-of-two using exponent
*
* @note This function calculates the following expression: (x + 2^n -1 ) / 2^n where n = exponent
*
* @param[in] x Element to divide.
* @param[in] exponent Integer value used to round to nearest division by a power-of-two
*
* @return the nearest division by a power-of-two using exponent
*/
int32_t rounding_divide_by_pow2(int32_t x, int exponent);
/** Converts from uint8x16 to float32x4x4_t
*
* @param[in] in Vector of uint8 to be converted
*
* @return Converted vector of float
*/
float32x4x4_t convert_uint8x16_to_float32x4x4(const uint8x16_t &in);
/** Converts from int8x16 to float32x4x4_t
*
* @param[in] in Vector of int8 to be converted
*
* @return Converted vector of float
*/
float32x4x4_t convert_int8x16_to_float32x4x4(const int8x16_t &in);
/** Converts to float32x4x4_t from the specified templated 16 elements vectors
*
* @param[in] in Vector of float to be converted
*
* @return Converted vector of float
*/
template <typename T>
float32x4x4_t convert_to_float32x4x4(const T &in);
/** Converts from two float32x4x3_t to just one uint8x8x3_t
*
* @param[in] in1 First input vector of float to be converted
* @param[in] in2 Second input vector of float to be converted
* @param[out] out Converted output vector uint8 to store the result
*/
void convert_float32x4x3_to_uint8x8x3(const float32x4x3_t &in1, const float32x4x3_t &in2, uint8x8x3_t &out);
/** Converts from two float32x4x4_t to just one uint8x16_t
*
* @param[in] in Vector of float to be converted
* @param[out] out Converted vector of uint8 to store the result
*/
void convert_float32x4x4_to_uint8x16(const float32x4x4_t &in, uint8x16_t &out);
/** Converts from float32x4x4_t to just one int8x16_t
*
* @param[in] in Vector of float to be converted
* @param[out] out Converted vector of uint8 to store the result
*/
void convert_float32x4x4_to_int8x16(const float32x4x4_t &in, int8x16_t &out);
/** Calculate sine.
*
* @param[in] val Input vector value in radians, F32 format.
*
* @return The calculated sine.
*/
float32x4_t vsinq_f32(float32x4_t val);
/** Calculate sine.
*
* @param[in] val Input vector value in radians, F32 format.
*
* @return The calculated sine.
*/
float32x2_t vsin_f32(float32x2_t val);
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
/** Calculate hyperbolic tangent.
*
* tanh(x) = (e^2x - 1)/(e^2x + 1)
*
* @note We clamp x to [-5,5] to avoid overflowing issues.
*
* @param[in] val Input vector value in F16 format.
*
* @return The calculated Hyperbolic Tangent.
*/
float16x8_t vtanhq_f16(float16x8_t val);
/** Calculate round value of a vector to nearest with ties to even.
*
* @param[in] val Input vector value in F16 format.
*
* @return The calculated round vector.
*/
float16x8_t vroundq_rte_f16(float16x8_t val);
/** Calculate reciprocal.
*
* @param[in] x Input value.
*
* @return The calculated reciprocal.
*/
float16x4_t vinv_f16(float16x4_t x);
/** Calculate reciprocal.
*
* @param[in] x Input value.
*
* @return The calculated reciprocal.
*/
float16x8_t vinvq_f16(float16x8_t x);
/** Calculate inverse square root.
*
* @param[in] x Input value.
*
* @return The calculated inverse square root.
*/
float16x4_t vinvsqrt_f16(float16x4_t x);
/** Calculate inverse square root.
*
* @param[in] x Input value.
*
* @return The calculated inverse square root.
*/
float16x8_t vinvsqrtq_f16(float16x8_t x);
/** Calculate exponential
*
* @param[in] x Input vector value in F16 format.
*
* @return The calculated exponent.
*/
float16x8_t vexpq_f16(float16x8_t x);
/** Calculate n power of a number.
*
* pow(x,n) = e^(n*log(x))
*
* @param[in] val Input vector value in F16 format.
* @param[in] n Powers to raise the input to.
*
* @return The calculated power.
*/
float16x8_t vpowq_f16(float16x8_t val, float16x8_t n);
/** Calculate sine.
*
* @param[in] val Input vector value in radians, F16 format.
*
* @return The calculated sine.
*/
float16x8_t vsinq_f16(float16x8_t val);
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
} // namespace arm_compute
#include "arm_compute/core/NEON/NEMath.inl"
#endif /* ARM_COMPUTE_NEMATH_H */
|