1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
/*
* Copyright (c) 2019-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_NESYMM_H
#define ARM_COMPUTE_NESYMM_H
#include "arm_compute/core/NEON/NEMath.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include <arm_neon.h>
namespace arm_compute
{
using qsymm8_t = int8_t; /**< 8 bit quantized symmetric scalar value */
using qsymm16_t = int16_t; /**< 16 bit quantized symmetric scalar value */
using qsymm16x8_t = int16x8_t; /**< 16 bit quantized symmetric vector with 8 elements */
using qsymm16x8x2_t = int16x8x2_t; /**< 16 bit quantized symmetric vector with 16 elements */
/** Performs final quantization step on 8 signed 16-bit elements
*
* @tparam is_bounded_relu Specified if a fused bounded relu should be applied
*
* @param[in] in_s32 Input to be quantized.
* @param[in] result_fixedpoint_multiplier Result multiplier parameter
* @param[in] result_shift Result shift parameter
* @param[in] min_s16 Relu lower bound
* @param[in] max_s16 Relu upper bound
*
* @return Quantized values
*/
template <bool is_bounded_relu>
int16x8_t finalize_quantization_int16(int32x4x2_t &in_s32,
int result_fixedpoint_multiplier,
int32_t result_shift,
int16x8_t min_s16,
int16x8_t max_s16)
{
if(result_shift < 0)
{
in_s32.val[0] = vmulq_n_s32(in_s32.val[0], (1 << -result_shift));
in_s32.val[1] = vmulq_n_s32(in_s32.val[1], (1 << -result_shift));
in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
}
else
{
// Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
// Round to the nearest division by a power-of-two using result_shift_s32
in_s32.val[0] = rounding_divide_by_pow2(in_s32.val[0], result_shift);
in_s32.val[1] = rounding_divide_by_pow2(in_s32.val[1], result_shift);
}
// Convert S32 to S16
int16x8_t out_s16 = vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1]));
if(is_bounded_relu)
{
out_s16 = vmaxq_s16(out_s16, min_s16);
out_s16 = vminq_s16(out_s16, max_s16);
}
return out_s16;
}
/** Performs final quantization step on single signed 16-bit element
*
* @tparam is_bounded_relu Specified if a fused bounded relu should be applied
*
* @param[in] in_value Input to be quantized.
* @param[in] result_fixedpoint_multiplier Result multiplier parameter
* @param[in] result_shift Result shift parameter
* @param[in] min_s16 Relu lower bound
* @param[in] max_s16 Relu upper bound
*
* @return Quantized values
*/
template <bool is_bounded_relu>
inline int16_t finalize_quantization_int16(int32_t in_value, int result_fixedpoint_multiplier,
int32_t result_shift, int16_t min_s16, int16_t max_s16)
{
if(result_shift < 0)
{
const int64_t in_64 = static_cast<int64_t>(in_value) * (1 << (-result_shift)) * static_cast<int64_t>(result_fixedpoint_multiplier);
in_value = static_cast<int32_t>((in_64 + (1 << 30)) >> 31);
}
else
{
// Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
const int64_t in_64 = static_cast<int64_t>(in_value) * static_cast<int64_t>(result_fixedpoint_multiplier);
// Shift value by result_shift_s32
in_value = rounding_divide_by_pow2(static_cast<int32_t>((in_64 + (1 << 30)) >> 31), result_shift);
}
// Bound the result
int16_t out_s16 = static_cast<int16_t>(std::max<int32_t>(-32768, std::min<int32_t>(32767, in_value)));
if(is_bounded_relu)
{
out_s16 = static_cast<int16_t>(std::max(min_s16, std::min(max_s16, out_s16)));
}
return out_s16;
}
/** Dequantize a neon vector holding 8 16-bit quantized values.
*
* @param[in] qv Input values to be dequantized.
* @param[in] scale Quantization scale
*
* @return Dequantized values in a neon vector
*/
inline float32x4x2_t vdequantize_int16(const int16x8_t &qv, float scale)
{
const float32x4_t vscale = vdupq_n_f32(scale);
const float32x4x2_t vdequantized_input =
{
{
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv))), vscale),
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv))), vscale)
}
};
return vdequantized_input;
}
/** Quantize a neon vector holding 8 floating point values.
*
* @param[in] qv Input values to be quantized.
* @param[in] scale Quantization scale
*
* @return A neon vector holding the quantized values
*/
inline int16x8_t vquantize_int16(const float32x4x2_t &qv, float scale)
{
const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
const int32x4x2_t rf =
{
{
#ifdef __aarch64__
vcvtnq_s32_f32(vmulq_f32(qv.val[0], vinvscale)),
vcvtnq_s32_f32(vmulq_f32(qv.val[1], vinvscale))
#else //__aarch64__
vcvtq_s32_f32(vmulq_f32(qv.val[0], vinvscale)),
vcvtq_s32_f32(vmulq_f32(qv.val[1], vinvscale))
#endif //__aarch64__
}
};
return vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1]));
}
/** Dequantize a neon vector holding 16 16-bit quantized values.
*
* @param[in] qv Input values to be dequantized.
* @param[in] qi Quantization information to be used in the computation.
*
* @return Dequantized values in a neon vector
*/
inline float32x4x4_t vdequantize(const int16x8x2_t &qv, const UniformQuantizationInfo &qi)
{
const float scale = qi.scale;
const float32x4_t vscale = vdupq_n_f32(scale);
const float32x4x4_t vdequantized_input =
{
{
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv.val[0]))), vscale),
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv.val[0]))), vscale),
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv.val[1]))), vscale),
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv.val[1]))), vscale),
}
};
return vdequantized_input;
}
/** Quantize a neon vector holding 16 floating point values.
*
* @param[in] qv Input values to be quantized.
* @param[in] qi Quantization information to be used in the computation.
*
* @return A neon vector holding the quantized values
*/
inline qsymm16x8x2_t vquantize_qsymm16(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
{
const float scale = qi.scale;
ARM_COMPUTE_ERROR_ON(scale == 0.f);
const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
const int32x4x4_t rf =
{
{
#ifdef __aarch64__
vcvtnq_s32_f32(vmulq_f32(qv.val[0], vinvscale)),
vcvtnq_s32_f32(vmulq_f32(qv.val[1], vinvscale)),
vcvtnq_s32_f32(vmulq_f32(qv.val[2], vinvscale)),
vcvtnq_s32_f32(vmulq_f32(qv.val[3], vinvscale)),
#else //__aarch64__
vcvtq_s32_f32(vmulq_f32(qv.val[0], vinvscale)),
vcvtq_s32_f32(vmulq_f32(qv.val[1], vinvscale)),
vcvtq_s32_f32(vmulq_f32(qv.val[2], vinvscale)),
vcvtq_s32_f32(vmulq_f32(qv.val[3], vinvscale)),
#endif //__aarch64__
}
};
const qsymm16x8x2_t res =
{
vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])),
vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])),
};
return res;
}
/** Multiply a neon vector using quantized multiplier and shift
*
* @param[in] input Input vector to mutiply values to be quantized.
* @param[in] qmul Quantized multipler
* @param[in] shift Left bit shift
*
* @return A neon vector holding the multiplied value
*/
inline int32x4x2_t multiply_by_quantized_multiplier_2row(int32x4x2_t input, int32_t qmul, int32_t shift)
{
const auto left_shift = shift > 0 ? shift : 0;
const auto right_shift = shift > 0 ? 0 : -shift;
const auto one_shifted = 1 << left_shift;
int32x4x2_t result;
result.val[0] = rounding_divide_by_pow2(vqrdmulhq_n_s32(vmulq_n_s32(input.val[0], one_shifted), qmul), right_shift);
result.val[1] = rounding_divide_by_pow2(vqrdmulhq_n_s32(vmulq_n_s32(input.val[1], one_shifted), qmul), right_shift);
return result;
}
} // namespace arm_compute
#endif // ARM_COMPUTE_NESYMM_H
|