1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
|
/*
* Copyright (c) 2016-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_UTILS_H
#define ARM_COMPUTE_UTILS_H
#include "arm_compute/core/Error.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/Rounding.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Version.h"
#include <algorithm>
#include <cstdint>
#include <cstdlib>
#include <iomanip>
#include <numeric>
#include <sstream>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
namespace arm_compute
{
/** Calculate the rounded up quotient of val / m.
*
* @param[in] val Value to divide and round up.
* @param[in] m Value to divide by.
*
* @return the result.
*/
template <typename S, typename T>
constexpr auto DIV_CEIL(S val, T m) -> decltype((val + m - 1) / m)
{
return (val + m - 1) / m;
}
/** Computes the smallest number larger or equal to value that is a multiple of divisor.
*
* @param[in] value Lower bound value
* @param[in] divisor Value to compute multiple of.
*
* @return the result.
*/
template <typename S, typename T>
inline auto ceil_to_multiple(S value, T divisor) -> decltype(((value + divisor - 1) / divisor) * divisor)
{
ARM_COMPUTE_ERROR_ON(value < 0 || divisor <= 0);
return DIV_CEIL(value, divisor) * divisor;
}
/** Computes the largest number smaller or equal to value that is a multiple of divisor.
*
* @param[in] value Upper bound value
* @param[in] divisor Value to compute multiple of.
*
* @return the result.
*/
template <typename S, typename T>
inline auto floor_to_multiple(S value, T divisor) -> decltype((value / divisor) * divisor)
{
ARM_COMPUTE_ERROR_ON(value < 0 || divisor <= 0);
return (value / divisor) * divisor;
}
/** Load an entire file in memory
*
* @param[in] filename Name of the file to read.
* @param[in] binary Is it a binary file ?
*
* @return The content of the file.
*/
std::string read_file(const std::string &filename, bool binary);
/** The size in bytes of the data type
*
* @param[in] data_type Input data type
*
* @return The size in bytes of the data type
*/
inline size_t data_size_from_type(DataType data_type)
{
switch(data_type)
{
case DataType::U8:
case DataType::S8:
case DataType::QSYMM8:
case DataType::QASYMM8:
case DataType::QASYMM8_SIGNED:
case DataType::QSYMM8_PER_CHANNEL:
return 1;
case DataType::U16:
case DataType::S16:
case DataType::QSYMM16:
case DataType::QASYMM16:
case DataType::BFLOAT16:
case DataType::F16:
return 2;
case DataType::F32:
case DataType::U32:
case DataType::S32:
return 4;
case DataType::F64:
case DataType::U64:
case DataType::S64:
return 8;
case DataType::SIZET:
return sizeof(size_t);
default:
ARM_COMPUTE_ERROR("Invalid data type");
return 0;
}
}
/** The size in bytes of the pixel format
*
* @param[in] format Input format
*
* @return The size in bytes of the pixel format
*/
inline size_t pixel_size_from_format(Format format)
{
switch(format)
{
case Format::U8:
return 1;
case Format::U16:
case Format::S16:
case Format::BFLOAT16:
case Format::F16:
case Format::UV88:
case Format::YUYV422:
case Format::UYVY422:
return 2;
case Format::RGB888:
return 3;
case Format::RGBA8888:
return 4;
case Format::U32:
case Format::S32:
case Format::F32:
return 4;
//Doesn't make sense for planar formats:
case Format::NV12:
case Format::NV21:
case Format::IYUV:
case Format::YUV444:
default:
ARM_COMPUTE_ERROR("Undefined pixel size for given format");
return 0;
}
}
/** The size in bytes of the data type
*
* @param[in] dt Input data type
*
* @return The size in bytes of the data type
*/
inline size_t element_size_from_data_type(DataType dt)
{
switch(dt)
{
case DataType::S8:
case DataType::U8:
case DataType::QSYMM8:
case DataType::QASYMM8:
case DataType::QASYMM8_SIGNED:
case DataType::QSYMM8_PER_CHANNEL:
return 1;
case DataType::U16:
case DataType::S16:
case DataType::QSYMM16:
case DataType::QASYMM16:
case DataType::BFLOAT16:
case DataType::F16:
return 2;
case DataType::U32:
case DataType::S32:
case DataType::F32:
return 4;
default:
ARM_COMPUTE_ERROR("Undefined element size for given data type");
return 0;
}
}
/** Return the data type used by a given single-planar pixel format
*
* @param[in] format Input format
*
* @return The size in bytes of the pixel format
*/
inline DataType data_type_from_format(Format format)
{
switch(format)
{
case Format::U8:
case Format::UV88:
case Format::RGB888:
case Format::RGBA8888:
case Format::YUYV422:
case Format::UYVY422:
return DataType::U8;
case Format::U16:
return DataType::U16;
case Format::S16:
return DataType::S16;
case Format::U32:
return DataType::U32;
case Format::S32:
return DataType::S32;
case Format::BFLOAT16:
return DataType::BFLOAT16;
case Format::F16:
return DataType::F16;
case Format::F32:
return DataType::F32;
//Doesn't make sense for planar formats:
case Format::NV12:
case Format::NV21:
case Format::IYUV:
case Format::YUV444:
default:
ARM_COMPUTE_ERROR("Not supported data_type for given format");
return DataType::UNKNOWN;
}
}
/** Return the plane index of a given channel given an input format.
*
* @param[in] format Input format
* @param[in] channel Input channel
*
* @return The plane index of the specific channel of the specific format
*/
inline int plane_idx_from_channel(Format format, Channel channel)
{
switch(format)
{
// Single planar formats have a single plane
case Format::U8:
case Format::U16:
case Format::S16:
case Format::U32:
case Format::S32:
case Format::BFLOAT16:
case Format::F16:
case Format::F32:
case Format::UV88:
case Format::RGB888:
case Format::RGBA8888:
case Format::YUYV422:
case Format::UYVY422:
return 0;
// Multi planar formats
case Format::NV12:
case Format::NV21:
{
// Channel U and V share the same plane of format UV88
switch(channel)
{
case Channel::Y:
return 0;
case Channel::U:
case Channel::V:
return 1;
default:
ARM_COMPUTE_ERROR("Not supported channel");
return 0;
}
}
case Format::IYUV:
case Format::YUV444:
{
switch(channel)
{
case Channel::Y:
return 0;
case Channel::U:
return 1;
case Channel::V:
return 2;
default:
ARM_COMPUTE_ERROR("Not supported channel");
return 0;
}
}
default:
ARM_COMPUTE_ERROR("Not supported format");
return 0;
}
}
/** Return the channel index of a given channel given an input format.
*
* @param[in] format Input format
* @param[in] channel Input channel
*
* @return The channel index of the specific channel of the specific format
*/
inline int channel_idx_from_format(Format format, Channel channel)
{
switch(format)
{
case Format::RGB888:
{
switch(channel)
{
case Channel::R:
return 0;
case Channel::G:
return 1;
case Channel::B:
return 2;
default:
ARM_COMPUTE_ERROR("Not supported channel");
return 0;
}
}
case Format::RGBA8888:
{
switch(channel)
{
case Channel::R:
return 0;
case Channel::G:
return 1;
case Channel::B:
return 2;
case Channel::A:
return 3;
default:
ARM_COMPUTE_ERROR("Not supported channel");
return 0;
}
}
case Format::YUYV422:
{
switch(channel)
{
case Channel::Y:
return 0;
case Channel::U:
return 1;
case Channel::V:
return 3;
default:
ARM_COMPUTE_ERROR("Not supported channel");
return 0;
}
}
case Format::UYVY422:
{
switch(channel)
{
case Channel::Y:
return 1;
case Channel::U:
return 0;
case Channel::V:
return 2;
default:
ARM_COMPUTE_ERROR("Not supported channel");
return 0;
}
}
case Format::NV12:
{
switch(channel)
{
case Channel::Y:
return 0;
case Channel::U:
return 0;
case Channel::V:
return 1;
default:
ARM_COMPUTE_ERROR("Not supported channel");
return 0;
}
}
case Format::NV21:
{
switch(channel)
{
case Channel::Y:
return 0;
case Channel::U:
return 1;
case Channel::V:
return 0;
default:
ARM_COMPUTE_ERROR("Not supported channel");
return 0;
}
}
case Format::YUV444:
case Format::IYUV:
{
switch(channel)
{
case Channel::Y:
return 0;
case Channel::U:
return 0;
case Channel::V:
return 0;
default:
ARM_COMPUTE_ERROR("Not supported channel");
return 0;
}
}
default:
ARM_COMPUTE_ERROR("Not supported format");
return 0;
}
}
/** Return the number of planes for a given format
*
* @param[in] format Input format
*
* @return The number of planes for a given image format.
*/
inline size_t num_planes_from_format(Format format)
{
switch(format)
{
case Format::U8:
case Format::S16:
case Format::U16:
case Format::S32:
case Format::U32:
case Format::BFLOAT16:
case Format::F16:
case Format::F32:
case Format::RGB888:
case Format::RGBA8888:
case Format::YUYV422:
case Format::UYVY422:
return 1;
case Format::NV12:
case Format::NV21:
return 2;
case Format::IYUV:
case Format::YUV444:
return 3;
default:
ARM_COMPUTE_ERROR("Not supported format");
return 0;
}
}
/** Return the number of channels for a given single-planar pixel format
*
* @param[in] format Input format
*
* @return The number of channels for a given image format.
*/
inline size_t num_channels_from_format(Format format)
{
switch(format)
{
case Format::U8:
case Format::U16:
case Format::S16:
case Format::U32:
case Format::S32:
case Format::BFLOAT16:
case Format::F16:
case Format::F32:
return 1;
// Because the U and V channels are subsampled
// these formats appear like having only 2 channels:
case Format::YUYV422:
case Format::UYVY422:
return 2;
case Format::UV88:
return 2;
case Format::RGB888:
return 3;
case Format::RGBA8888:
return 4;
//Doesn't make sense for planar formats:
case Format::NV12:
case Format::NV21:
case Format::IYUV:
case Format::YUV444:
default:
return 0;
}
}
/** Return the promoted data type of a given data type.
*
* @note If promoted data type is not supported an error will be thrown
*
* @param[in] dt Data type to get the promoted type of.
*
* @return Promoted data type
*/
inline DataType get_promoted_data_type(DataType dt)
{
switch(dt)
{
case DataType::U8:
return DataType::U16;
case DataType::S8:
return DataType::S16;
case DataType::U16:
return DataType::U32;
case DataType::S16:
return DataType::S32;
case DataType::QSYMM8:
case DataType::QASYMM8:
case DataType::QASYMM8_SIGNED:
case DataType::QSYMM8_PER_CHANNEL:
case DataType::QSYMM16:
case DataType::QASYMM16:
case DataType::BFLOAT16:
case DataType::F16:
case DataType::U32:
case DataType::S32:
case DataType::F32:
ARM_COMPUTE_ERROR("Unsupported data type promotions!");
default:
ARM_COMPUTE_ERROR("Undefined data type!");
}
return DataType::UNKNOWN;
}
/** Compute the mininum and maximum values a data type can take
*
* @param[in] dt Data type to get the min/max bounds of
*
* @return A tuple (min,max) with the minimum and maximum values respectively wrapped in PixelValue.
*/
inline std::tuple<PixelValue, PixelValue> get_min_max(DataType dt)
{
PixelValue min{};
PixelValue max{};
switch(dt)
{
case DataType::U8:
case DataType::QASYMM8:
{
min = PixelValue(static_cast<int32_t>(std::numeric_limits<uint8_t>::lowest()));
max = PixelValue(static_cast<int32_t>(std::numeric_limits<uint8_t>::max()));
break;
}
case DataType::S8:
case DataType::QSYMM8:
case DataType::QASYMM8_SIGNED:
case DataType::QSYMM8_PER_CHANNEL:
{
min = PixelValue(static_cast<int32_t>(std::numeric_limits<int8_t>::lowest()));
max = PixelValue(static_cast<int32_t>(std::numeric_limits<int8_t>::max()));
break;
}
case DataType::U16:
case DataType::QASYMM16:
{
min = PixelValue(static_cast<int32_t>(std::numeric_limits<uint16_t>::lowest()));
max = PixelValue(static_cast<int32_t>(std::numeric_limits<uint16_t>::max()));
break;
}
case DataType::S16:
case DataType::QSYMM16:
{
min = PixelValue(static_cast<int32_t>(std::numeric_limits<int16_t>::lowest()));
max = PixelValue(static_cast<int32_t>(std::numeric_limits<int16_t>::max()));
break;
}
case DataType::U32:
{
min = PixelValue(std::numeric_limits<uint32_t>::lowest());
max = PixelValue(std::numeric_limits<uint32_t>::max());
break;
}
case DataType::S32:
{
min = PixelValue(std::numeric_limits<int32_t>::lowest());
max = PixelValue(std::numeric_limits<int32_t>::max());
break;
}
case DataType::BFLOAT16:
{
min = PixelValue(bfloat16::lowest());
max = PixelValue(bfloat16::max());
break;
}
case DataType::F16:
{
min = PixelValue(std::numeric_limits<half>::lowest());
max = PixelValue(std::numeric_limits<half>::max());
break;
}
case DataType::F32:
{
min = PixelValue(std::numeric_limits<float>::lowest());
max = PixelValue(std::numeric_limits<float>::max());
break;
}
default:
ARM_COMPUTE_ERROR("Undefined data type!");
}
return std::make_tuple(min, max);
}
/** Return true if the given format has horizontal subsampling.
*
* @param[in] format Format to determine subsampling.
*
* @return True if the format can be subsampled horizontaly.
*/
inline bool has_format_horizontal_subsampling(Format format)
{
return (format == Format::YUYV422 || format == Format::UYVY422 || format == Format::NV12 || format == Format::NV21 || format == Format::IYUV || format == Format::UV88) ? true : false;
}
/** Return true if the given format has vertical subsampling.
*
* @param[in] format Format to determine subsampling.
*
* @return True if the format can be subsampled verticaly.
*/
inline bool has_format_vertical_subsampling(Format format)
{
return (format == Format::NV12 || format == Format::NV21 || format == Format::IYUV || format == Format::UV88) ? true : false;
}
/** Separate a 2D convolution into two 1D convolutions
*
* @param[in] conv 2D convolution
* @param[out] conv_col 1D vertical convolution
* @param[out] conv_row 1D horizontal convolution
* @param[in] size Size of the 2D convolution
*
* @return true if the separation was successful
*/
inline bool separate_matrix(const int16_t *conv, int16_t *conv_col, int16_t *conv_row, uint8_t size)
{
int32_t min_col = -1;
int16_t min_col_val = -1;
for(int32_t i = 0; i < size; ++i)
{
if(conv[i] != 0 && (min_col < 0 || abs(min_col_val) > abs(conv[i])))
{
min_col = i;
min_col_val = conv[i];
}
}
if(min_col < 0)
{
return false;
}
for(uint32_t j = 0; j < size; ++j)
{
conv_col[j] = conv[min_col + j * size];
}
for(uint32_t i = 0; i < size; i++)
{
if(static_cast<int>(i) == min_col)
{
conv_row[i] = 1;
}
else
{
int16_t coeff = conv[i] / conv[min_col];
for(uint32_t j = 1; j < size; ++j)
{
if(conv[i + j * size] != (conv_col[j] * coeff))
{
return false;
}
}
conv_row[i] = coeff;
}
}
return true;
}
/** Calculate the scale of the given square matrix
*
* The scale is the absolute value of the sum of all the coefficients in the matrix.
*
* @note If the coefficients add up to 0 then the scale is set to 1.
*
* @param[in] matrix Matrix coefficients
* @param[in] matrix_size Number of elements per side of the square matrix. (Number of coefficients = matrix_size * matrix_size).
*
* @return The absolute value of the sum of the coefficients if they don't add up to 0, otherwise 1.
*/
inline uint32_t calculate_matrix_scale(const int16_t *matrix, unsigned int matrix_size)
{
const size_t size = matrix_size * matrix_size;
return std::max(1, std::abs(std::accumulate(matrix, matrix + size, 0)));
}
/** Adjust tensor shape size if width or height are odd for a given multi-planar format. No modification is done for other formats.
*
* @note Adding here a few links discussing the issue of odd size and sharing the same solution:
* <a href="https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/graphics/java/android/graphics/YuvImage.java">Android Source</a>
* <a href="https://groups.google.com/a/webmproject.org/forum/#!topic/webm-discuss/LaCKpqiDTXM">WebM</a>
* <a href="https://bugs.chromium.org/p/libyuv/issues/detail?id=198&can=1&q=odd%20width">libYUV</a>
* <a href="https://sourceforge.net/p/raw-yuvplayer/bugs/1/">YUVPlayer</a> *
*
* @param[in, out] shape Tensor shape of 2D size
* @param[in] format Format of the tensor
*
* @return The adjusted tensor shape.
*/
inline TensorShape adjust_odd_shape(const TensorShape &shape, Format format)
{
TensorShape output{ shape };
// Force width to be even for formats which require subsampling of the U and V channels
if(has_format_horizontal_subsampling(format))
{
output.set(0, output.x() & ~1U);
}
// Force height to be even for formats which require subsampling of the U and V channels
if(has_format_vertical_subsampling(format))
{
output.set(1, output.y() & ~1U);
}
return output;
}
/** Calculate subsampled shape for a given format and channel
*
* @param[in] shape Shape of the tensor to calculate the extracted channel.
* @param[in] format Format of the tensor.
* @param[in] channel Channel to create tensor shape to be extracted.
*
* @return The subsampled tensor shape.
*/
inline TensorShape calculate_subsampled_shape(const TensorShape &shape, Format format, Channel channel = Channel::UNKNOWN)
{
TensorShape output{ shape };
// Subsample shape only for U or V channel
if(Channel::U == channel || Channel::V == channel || Channel::UNKNOWN == channel)
{
// Subsample width for the tensor shape when channel is U or V
if(has_format_horizontal_subsampling(format))
{
output.set(0, output.x() / 2U);
}
// Subsample height for the tensor shape when channel is U or V
if(has_format_vertical_subsampling(format))
{
output.set(1, output.y() / 2U);
}
}
return output;
}
/** Calculate accurary required by the horizontal and vertical convolution computations
*
* @param[in] conv_col Pointer to the vertical vector of the separated convolution filter
* @param[in] conv_row Pointer to the horizontal vector of the convolution filter
* @param[in] size Number of elements per vector of the separated matrix
*
* @return The return type is a pair. The first element of the pair is the biggest data type needed for the first stage. The second
* element of the pair is the biggest data type needed for the second stage.
*/
inline std::pair<DataType, DataType> data_type_for_convolution(const int16_t *conv_col, const int16_t *conv_row, size_t size)
{
DataType first_stage = DataType::UNKNOWN;
DataType second_stage = DataType::UNKNOWN;
auto gez = [](const int16_t &v)
{
return v >= 0;
};
auto accu_neg = [](const int &first, const int &second)
{
return first + (second < 0 ? second : 0);
};
auto accu_pos = [](const int &first, const int &second)
{
return first + (second > 0 ? second : 0);
};
const bool only_positive_coefficients = std::all_of(conv_row, conv_row + size, gez) && std::all_of(conv_col, conv_col + size, gez);
if(only_positive_coefficients)
{
const int max_row_value = std::accumulate(conv_row, conv_row + size, 0) * UINT8_MAX;
const int max_value = std::accumulate(conv_col, conv_col + size, 0) * max_row_value;
first_stage = (max_row_value <= UINT16_MAX) ? DataType::U16 : DataType::S32;
second_stage = (max_value <= UINT16_MAX) ? DataType::U16 : DataType::S32;
}
else
{
const int min_row_value = std::accumulate(conv_row, conv_row + size, 0, accu_neg) * UINT8_MAX;
const int max_row_value = std::accumulate(conv_row, conv_row + size, 0, accu_pos) * UINT8_MAX;
const int neg_coeffs_sum = std::accumulate(conv_col, conv_col + size, 0, accu_neg);
const int pos_coeffs_sum = std::accumulate(conv_col, conv_col + size, 0, accu_pos);
const int min_value = neg_coeffs_sum * max_row_value + pos_coeffs_sum * min_row_value;
const int max_value = neg_coeffs_sum * min_row_value + pos_coeffs_sum * max_row_value;
first_stage = ((INT16_MIN <= min_row_value) && (max_row_value <= INT16_MAX)) ? DataType::S16 : DataType::S32;
second_stage = ((INT16_MIN <= min_value) && (max_value <= INT16_MAX)) ? DataType::S16 : DataType::S32;
}
return std::make_pair(first_stage, second_stage);
}
/** Calculate the accuracy required by the squared convolution calculation.
*
*
* @param[in] conv Pointer to the squared convolution matrix
* @param[in] size The total size of the convolution matrix
*
* @return The return is the biggest data type needed to do the convolution
*/
inline DataType data_type_for_convolution_matrix(const int16_t *conv, size_t size)
{
auto gez = [](const int16_t v)
{
return v >= 0;
};
const bool only_positive_coefficients = std::all_of(conv, conv + size, gez);
if(only_positive_coefficients)
{
const int max_conv_value = std::accumulate(conv, conv + size, 0) * UINT8_MAX;
if(max_conv_value <= UINT16_MAX)
{
return DataType::U16;
}
else
{
return DataType::S32;
}
}
else
{
const int min_value = std::accumulate(conv, conv + size, 0, [](int a, int b)
{
return b < 0 ? a + b : a;
})
* UINT8_MAX;
const int max_value = std::accumulate(conv, conv + size, 0, [](int a, int b)
{
return b > 0 ? a + b : a;
})
* UINT8_MAX;
if((INT16_MIN <= min_value) && (INT16_MAX >= max_value))
{
return DataType::S16;
}
else
{
return DataType::S32;
}
}
}
/** Permutes the given dimensions according the permutation vector
*
* @param[in,out] dimensions Dimensions to be permuted.
* @param[in] perm Vector describing the permutation.
*
*/
template <typename T>
inline void permute_strides(Dimensions<T> &dimensions, const PermutationVector &perm)
{
const auto old_dim = utility::make_array<Dimensions<T>::num_max_dimensions>(dimensions.begin(), dimensions.end());
for(unsigned int i = 0; i < perm.num_dimensions(); ++i)
{
T dimension_val = old_dim[i];
dimensions.set(perm[i], dimension_val);
}
}
/** Calculate padding requirements in case of SAME padding
*
* @param[in] input_shape Input shape
* @param[in] weights_shape Weights shape
* @param[in] conv_info Convolution information (containing strides)
* @param[in] data_layout (Optional) Data layout of the input and weights tensor
* @param[in] dilation (Optional) Dilation factor used in the convolution.
* @param[in] rounding_type (Optional) Dimension rounding type when down-scaling.
*
* @return PadStrideInfo for SAME padding
*/
PadStrideInfo calculate_same_pad(TensorShape input_shape, TensorShape weights_shape, PadStrideInfo conv_info, DataLayout data_layout = DataLayout::NCHW, const Size2D &dilation = Size2D(1u, 1u),
const DimensionRoundingType &rounding_type = DimensionRoundingType::FLOOR);
/** Returns expected width and height of the deconvolution's output tensor.
*
* @param[in] in_width Width of input tensor (Number of columns)
* @param[in] in_height Height of input tensor (Number of rows)
* @param[in] kernel_width Kernel width.
* @param[in] kernel_height Kernel height.
* @param[in] pad_stride_info Pad and stride information.
*
* @return A pair with the new width in the first position and the new height in the second.
*/
std::pair<unsigned int, unsigned int> deconvolution_output_dimensions(unsigned int in_width, unsigned int in_height,
unsigned int kernel_width, unsigned int kernel_height,
const PadStrideInfo &pad_stride_info);
/** Returns expected width and height of output scaled tensor depending on dimensions rounding mode.
*
* @param[in] width Width of input tensor (Number of columns)
* @param[in] height Height of input tensor (Number of rows)
* @param[in] kernel_width Kernel width.
* @param[in] kernel_height Kernel height.
* @param[in] pad_stride_info Pad and stride information.
* @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
*
* @return A pair with the new width in the first position and the new height in the second.
*/
std::pair<unsigned int, unsigned int> scaled_dimensions(int width, int height,
int kernel_width, int kernel_height,
const PadStrideInfo &pad_stride_info,
const Size2D &dilation = Size2D(1U, 1U));
/** Check if the given reduction operation should be handled in a serial way.
*
* @param[in] op Reduction operation to perform
* @param[in] dt Data type
* @param[in] axis Axis along which to reduce
*
* @return True if the given reduction operation should be handled in a serial way.
*/
bool needs_serialized_reduction(ReductionOperation op, DataType dt, unsigned int axis);
/** Returns output quantization information for softmax layer
*
* @param[in] input_type The data type of the input tensor
* @param[in] is_log True for log softmax
*
* @return Quantization information for the output tensor
*/
QuantizationInfo get_softmax_output_quantization_info(DataType input_type, bool is_log);
/** Returns a pair of minimum and maximum values for a quantized activation
*
* @param[in] act_info The information for activation
* @param[in] data_type The used data type
* @param[in] oq_info The output quantization information
*
* @return The pair with minimum and maximum values
*/
std::pair<int32_t, int32_t> get_quantized_activation_min_max(ActivationLayerInfo act_info, DataType data_type, UniformQuantizationInfo oq_info);
/** Convert a tensor format into a string.
*
* @param[in] format @ref Format to be translated to string.
*
* @return The string describing the format.
*/
const std::string &string_from_format(Format format);
/** Convert a channel identity into a string.
*
* @param[in] channel @ref Channel to be translated to string.
*
* @return The string describing the channel.
*/
const std::string &string_from_channel(Channel channel);
/** Convert a data layout identity into a string.
*
* @param[in] dl @ref DataLayout to be translated to string.
*
* @return The string describing the data layout.
*/
const std::string &string_from_data_layout(DataLayout dl);
/** Convert a data type identity into a string.
*
* @param[in] dt @ref DataType to be translated to string.
*
* @return The string describing the data type.
*/
const std::string &string_from_data_type(DataType dt);
/** Convert a matrix pattern into a string.
*
* @param[in] pattern @ref MatrixPattern to be translated to string.
*
* @return The string describing the matrix pattern.
*/
const std::string &string_from_matrix_pattern(MatrixPattern pattern);
/** Translates a given activation function to a string.
*
* @param[in] act @ref ActivationLayerInfo::ActivationFunction to be translated to string.
*
* @return The string describing the activation function.
*/
const std::string &string_from_activation_func(ActivationLayerInfo::ActivationFunction act);
/** Translates a given non linear function to a string.
*
* @param[in] function @ref NonLinearFilterFunction to be translated to string.
*
* @return The string describing the non linear function.
*/
const std::string &string_from_non_linear_filter_function(NonLinearFilterFunction function);
/** Translates a given interpolation policy to a string.
*
* @param[in] policy @ref InterpolationPolicy to be translated to string.
*
* @return The string describing the interpolation policy.
*/
const std::string &string_from_interpolation_policy(InterpolationPolicy policy);
/** Translates a given border mode policy to a string.
*
* @param[in] border_mode @ref BorderMode to be translated to string.
*
* @return The string describing the border mode.
*/
const std::string &string_from_border_mode(BorderMode border_mode);
/** Translates a given normalization type to a string.
*
* @param[in] type @ref NormType to be translated to string.
*
* @return The string describing the normalization type.
*/
const std::string &string_from_norm_type(NormType type);
/** Translates a given pooling type to a string.
*
* @param[in] type @ref PoolingType to be translated to string.
*
* @return The string describing the pooling type.
*/
const std::string &string_from_pooling_type(PoolingType type);
/** Translates a given GEMMLowp output stage to a string.
*
* @param[in] output_stage @ref GEMMLowpOutputStageInfo to be translated to string.
*
* @return The string describing the GEMMLowp output stage
*/
const std::string &string_from_gemmlowp_output_stage(GEMMLowpOutputStageType output_stage);
/** Convert a PixelValue to a string, represented through the specific data type
*
* @param[in] value The PixelValue to convert
* @param[in] data_type The type to be used to convert the @p value
*
* @return String representation of the PixelValue through the given data type.
*/
std::string string_from_pixel_value(const PixelValue &value, const DataType data_type);
/** Lower a given string.
*
* @param[in] val Given string to lower.
*
* @return The lowered string
*/
std::string lower_string(const std::string &val);
/** Check if a given data type is of floating point type
*
* @param[in] dt Input data type.
*
* @return True if data type is of floating point type, else false.
*/
inline bool is_data_type_float(DataType dt)
{
switch(dt)
{
case DataType::F16:
case DataType::F32:
return true;
default:
return false;
}
}
/** Check if a given data type is of quantized type
*
* @note Quantized is considered a super-set of fixed-point and asymmetric data types.
*
* @param[in] dt Input data type.
*
* @return True if data type is of quantized type, else false.
*/
inline bool is_data_type_quantized(DataType dt)
{
switch(dt)
{
case DataType::QSYMM8:
case DataType::QASYMM8:
case DataType::QASYMM8_SIGNED:
case DataType::QSYMM8_PER_CHANNEL:
case DataType::QSYMM16:
case DataType::QASYMM16:
return true;
default:
return false;
}
}
/** Check if a given data type is of asymmetric quantized type
*
* @param[in] dt Input data type.
*
* @return True if data type is of asymmetric quantized type, else false.
*/
inline bool is_data_type_quantized_asymmetric(DataType dt)
{
switch(dt)
{
case DataType::QASYMM8:
case DataType::QASYMM8_SIGNED:
case DataType::QASYMM16:
return true;
default:
return false;
}
}
/** Check if a given data type is of asymmetric quantized signed type
*
* @param[in] dt Input data type.
*
* @return True if data type is of asymmetric quantized signed type, else false.
*/
inline bool is_data_type_quantized_asymmetric_signed(DataType dt)
{
switch(dt)
{
case DataType::QASYMM8_SIGNED:
return true;
default:
return false;
}
}
/** Check if a given data type is of symmetric quantized type
*
* @param[in] dt Input data type.
*
* @return True if data type is of symmetric quantized type, else false.
*/
inline bool is_data_type_quantized_symmetric(DataType dt)
{
switch(dt)
{
case DataType::QSYMM8:
case DataType::QSYMM8_PER_CHANNEL:
case DataType::QSYMM16:
return true;
default:
return false;
}
}
/** Check if a given data type is of per channel type
*
* @param[in] dt Input data type.
*
* @return True if data type is of per channel type, else false.
*/
inline bool is_data_type_quantized_per_channel(DataType dt)
{
switch(dt)
{
case DataType::QSYMM8_PER_CHANNEL:
return true;
default:
return false;
}
}
/** Create a string with the float in full precision.
*
* @param val Floating point value
*
* @return String with the floating point value.
*/
inline std::string float_to_string_with_full_precision(float val)
{
std::stringstream ss;
ss.precision(std::numeric_limits<float>::max_digits10);
ss << val;
if(val != static_cast<int>(val))
{
ss << "f";
}
return ss.str();
}
/** Returns the number of elements required to go from start to end with the wanted step
*
* @param[in] start start value
* @param[in] end end value
* @param[in] step step value between each number in the wanted sequence
*
* @return number of elements to go from start value to end value using the wanted step
*/
inline size_t num_of_elements_in_range(const float start, const float end, const float step)
{
ARM_COMPUTE_ERROR_ON_MSG(step == 0, "Range Step cannot be 0");
return size_t(std::ceil((end - start) / step));
}
/** Returns true if the value can be represented by the given data type
*
* @param[in] val value to be checked
* @param[in] dt data type that is checked
* @param[in] qinfo (Optional) quantization info if the data type is QASYMM8
*
* @return true if the data type can hold the value.
*/
template <typename T>
bool check_value_range(T val, DataType dt, QuantizationInfo qinfo = QuantizationInfo())
{
switch(dt)
{
case DataType::U8:
{
const auto val_u8 = static_cast<uint8_t>(val);
return ((val_u8 == val) && val_u8 >= std::numeric_limits<uint8_t>::lowest() && val_u8 <= std::numeric_limits<uint8_t>::max());
}
case DataType::QASYMM8:
{
double min = static_cast<double>(dequantize_qasymm8(0, qinfo));
double max = static_cast<double>(dequantize_qasymm8(std::numeric_limits<uint8_t>::max(), qinfo));
return ((double)val >= min && (double)val <= max);
}
case DataType::S8:
{
const auto val_s8 = static_cast<int8_t>(val);
return ((val_s8 == val) && val_s8 >= std::numeric_limits<int8_t>::lowest() && val_s8 <= std::numeric_limits<int8_t>::max());
}
case DataType::U16:
{
const auto val_u16 = static_cast<uint16_t>(val);
return ((val_u16 == val) && val_u16 >= std::numeric_limits<uint16_t>::lowest() && val_u16 <= std::numeric_limits<uint16_t>::max());
}
case DataType::S16:
{
const auto val_s16 = static_cast<int16_t>(val);
return ((val_s16 == val) && val_s16 >= std::numeric_limits<int16_t>::lowest() && val_s16 <= std::numeric_limits<int16_t>::max());
}
case DataType::U32:
{
const auto val_u32 = static_cast<uint32_t>(val);
return ((val_u32 == val) && val_u32 >= std::numeric_limits<uint32_t>::lowest() && val_u32 <= std::numeric_limits<uint32_t>::max());
}
case DataType::S32:
{
const auto val_s32 = static_cast<int32_t>(val);
return ((val_s32 == val) && val_s32 >= std::numeric_limits<int32_t>::lowest() && val_s32 <= std::numeric_limits<int32_t>::max());
}
case DataType::BFLOAT16:
return (val >= bfloat16::lowest() && val <= bfloat16::max());
case DataType::F16:
return (val >= std::numeric_limits<half>::lowest() && val <= std::numeric_limits<half>::max());
case DataType::F32:
return (val >= std::numeric_limits<float>::lowest() && val <= std::numeric_limits<float>::max());
default:
ARM_COMPUTE_ERROR("Data type not supported");
return false;
}
}
#ifdef ARM_COMPUTE_ASSERTS_ENABLED
/** Print consecutive elements to an output stream.
*
* @param[out] s Output stream to print the elements to.
* @param[in] ptr Pointer to print the elements from.
* @param[in] n Number of elements to print.
* @param[in] stream_width (Optional) Width of the stream. If set to 0 the element's width is used. Defaults to 0.
* @param[in] element_delim (Optional) Delimeter among the consecutive elements. Defaults to space delimeter
*/
template <typename T>
void print_consecutive_elements_impl(std::ostream &s, const T *ptr, unsigned int n, int stream_width = 0, const std::string &element_delim = " ")
{
using print_type = typename std::conditional<std::is_floating_point<T>::value, T, int>::type;
std::ios stream_status(nullptr);
stream_status.copyfmt(s);
for(unsigned int i = 0; i < n; ++i)
{
// Set stream width as it is not a "sticky" stream manipulator
if(stream_width != 0)
{
s.width(stream_width);
}
if(std::is_same<typename std::decay<T>::type, half>::value)
{
// We use T instead of print_type here is because the std::is_floating_point<half> returns false and then the print_type becomes int.
s << std::right << static_cast<T>(ptr[i]) << element_delim;
}
else if(std::is_same<typename std::decay<T>::type, bfloat16>::value)
{
// We use T instead of print_type here is because the std::is_floating_point<bfloat16> returns false and then the print_type becomes int.
s << std::right << float(ptr[i]) << element_delim;
}
else
{
s << std::right << static_cast<print_type>(ptr[i]) << element_delim;
}
}
// Restore output stream flags
s.copyfmt(stream_status);
}
/** Identify the maximum width of n consecutive elements.
*
* @param[in] s The output stream which will be used to print the elements. Used to extract the stream format.
* @param[in] ptr Pointer to the elements.
* @param[in] n Number of elements.
*
* @return The maximum width of the elements.
*/
template <typename T>
int max_consecutive_elements_display_width_impl(std::ostream &s, const T *ptr, unsigned int n)
{
using print_type = typename std::conditional<std::is_floating_point<T>::value, T, int>::type;
int max_width = -1;
for(unsigned int i = 0; i < n; ++i)
{
std::stringstream ss;
ss.copyfmt(s);
if(std::is_same<typename std::decay<T>::type, half>::value)
{
// We use T instead of print_type here is because the std::is_floating_point<half> returns false and then the print_type becomes int.
ss << static_cast<T>(ptr[i]);
}
else if(std::is_same<typename std::decay<T>::type, bfloat16>::value)
{
// We use T instead of print_type here is because the std::is_floating_point<bfloat> returns false and then the print_type becomes int.
ss << float(ptr[i]);
}
else
{
ss << static_cast<print_type>(ptr[i]);
}
max_width = std::max<int>(max_width, ss.str().size());
}
return max_width;
}
/** Print consecutive elements to an output stream.
*
* @param[out] s Output stream to print the elements to.
* @param[in] dt Data type of the elements
* @param[in] ptr Pointer to print the elements from.
* @param[in] n Number of elements to print.
* @param[in] stream_width (Optional) Width of the stream. If set to 0 the element's width is used. Defaults to 0.
* @param[in] element_delim (Optional) Delimeter among the consecutive elements. Defaults to space delimeter
*/
void print_consecutive_elements(std::ostream &s, DataType dt, const uint8_t *ptr, unsigned int n, int stream_width, const std::string &element_delim = " ");
/** Identify the maximum width of n consecutive elements.
*
* @param[in] s Output stream to print the elements to.
* @param[in] dt Data type of the elements
* @param[in] ptr Pointer to print the elements from.
* @param[in] n Number of elements to print.
*
* @return The maximum width of the elements.
*/
int max_consecutive_elements_display_width(std::ostream &s, DataType dt, const uint8_t *ptr, unsigned int n);
#endif /* ARM_COMPUTE_ASSERTS_ENABLED */
}
#endif /*ARM_COMPUTE_UTILS_H */
|