1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_DIMENSIONS_H
#define ARM_COMPUTE_DIMENSIONS_H
#include "arm_compute/core/Error.h"
#include <algorithm>
#include <array>
#include <functional>
#include <limits>
#include <numeric>
namespace arm_compute
{
/** Constant value used to indicate maximum dimensions of a Window, TensorShape and Coordinates */
constexpr size_t MAX_DIMS = 6;
/** Dimensions with dimensionality */
template <typename T>
class Dimensions
{
public:
/** Number of dimensions the tensor has */
static constexpr size_t num_max_dimensions = MAX_DIMS;
/** Constructor to initialize the tensor shape.
*
* @param[in] dims Values to initialize the dimensions.
*/
template <typename... Ts>
explicit Dimensions(Ts... dims) : _id{{static_cast<T>(dims)...}}, _num_dimensions{sizeof...(dims)}
{
}
/** Allow instances of this class to be copy constructed */
Dimensions(const Dimensions &) = default;
/** Allow instances of this class to be copied */
Dimensions &operator=(const Dimensions &) = default;
/** Allow instances of this class to be move constructed */
Dimensions(Dimensions &&) = default;
/** Allow instances of this class to be moved */
Dimensions &operator=(Dimensions &&) = default;
/** Accessor to set the value of one of the dimensions.
*
* @param[in] dimension Dimension for which the value is set.
* @param[in] value Value to be set for the dimension.
* @param[in] increase_dim_unit (Optional) Set to true if new unit dimensions increase the number of dimensions (e.g. for Coordinates), false otherwise (e.g. for TensorShapes)
*/
void set(size_t dimension, T value, bool increase_dim_unit = true)
{
ARM_COMPUTE_ERROR_ON(dimension >= num_max_dimensions);
_id[dimension] = value;
// Don't increase the number of dimensions if the new dimension is 1
if (increase_dim_unit || value != 1)
{
_num_dimensions = std::max(_num_dimensions, dimension + 1);
}
}
/** Alias to access the size of the first dimension */
T x() const
{
return _id[0];
}
/** Alias to access the size of the second dimension */
T y() const
{
return _id[1];
}
/** Alias to access the size of the third dimension */
T z() const
{
return _id[2];
}
/** Increments the given dimension by a step size, avoiding overflows
*
* @note Precondition: dim < _num_dimensions
*
* @param[in] dim Dimension to increment.
* @param[in] step Step to increment @p dim by.
*/
void increment(size_t dim, T step = 1)
{
ARM_COMPUTE_ERROR_ON(dim >= _num_dimensions);
if ((std::numeric_limits<T>::max() - _id[dim]) >= step)
{
_id[dim] += step;
}
}
/** Generic accessor to get the size of any dimension
*
* @note Precondition: dimension < Dimensions::num_max_dimensions
*
* @param[in] dimension Dimension of the wanted size
*
* @return The size of the requested dimension.
*/
const T &operator[](size_t dimension) const
{
ARM_COMPUTE_ERROR_ON(dimension >= num_max_dimensions);
return _id[dimension];
}
/** Generic accessor to get the size of any dimension
*
* @note Precondition: dimension < Dimensions::num_max_dimensions
*
* @param[in] dimension Dimension of the wanted size
*
* @return The size of the requested dimension.
*/
T &operator[](size_t dimension)
{
ARM_COMPUTE_ERROR_ON(dimension >= num_max_dimensions);
return _id[dimension];
}
/** Returns the effective dimensionality of the tensor */
unsigned int num_dimensions() const
{
return _num_dimensions;
}
/** Set number of dimensions */
void set_num_dimensions(size_t num_dimensions)
{
_num_dimensions = num_dimensions;
}
/** Collapse dimensions.
*
* @param[in] n Number of dimensions to collapse into @p first.
* @param[in] first Dimensions into which the following @p n are collapsed.
*/
void collapse(const size_t n, const size_t first = 0)
{
ARM_COMPUTE_ERROR_ON(first + n > _id.size());
const size_t last = std::min(_num_dimensions, first + n);
if (last > (first + 1))
{
// Collapse dimensions into the first
_id[first] = std::accumulate(&_id[first], &_id[last], 1, std::multiplies<T>());
// Shift the remaining dimensions down
std::copy(&_id[last], &_id[_num_dimensions], &_id[first + 1]);
// Reduce the number of dimensions
const size_t old_num_dimensions = _num_dimensions;
_num_dimensions -= last - first - 1;
// Fill the now empty dimensions with zero
std::fill(&_id[_num_dimensions], &_id[old_num_dimensions], 0);
}
}
/** Collapse dimensions starting from a given point
*
* @param[in] start Starting point of collapsing dimensions
*/
void collapse_from(size_t start)
{
ARM_COMPUTE_ERROR_ON(start > num_dimensions());
collapse(num_dimensions() - start, start);
}
/** Remove dimension of a given index
*
* @note If index is greater than the number of dimensions no operation is performed
*
* @param[in] idx Dimension index to remove
*/
void remove(size_t idx)
{
ARM_COMPUTE_ERROR_ON(_num_dimensions < 1);
if (idx >= _num_dimensions)
{
return;
}
std::copy(_id.begin() + idx + 1, _id.end(), _id.begin() + idx);
_num_dimensions--;
// Make sure all empty dimensions are filled with 0
std::fill(_id.begin() + _num_dimensions, _id.end(), 0);
}
/** Returns a read/write iterator that points to the first element in the dimension array.
*
* @return an iterator.
*/
typename std::array<T, num_max_dimensions>::iterator begin()
{
return _id.begin();
}
/** Returns a read-only (constant) iterator that points to the first element in the dimension array.
*
* @return an iterator.
*/
typename std::array<T, num_max_dimensions>::const_iterator begin() const
{
return _id.begin();
}
/** Returns a read-only (constant) iterator that points to the first element in the dimension array.
*
* @return an iterator.
*/
typename std::array<T, num_max_dimensions>::const_iterator cbegin() const
{
return begin();
}
/** Returns a read/write iterator that points one past the last element in the dimension array.
*
* @return an iterator.
*/
typename std::array<T, num_max_dimensions>::iterator end()
{
return _id.end();
}
/** Returns a read-only (constant) iterator that points one past the last element in the dimension array.
*
* @return an iterator.
*/
typename std::array<T, num_max_dimensions>::const_iterator end() const
{
return _id.end();
}
/** Returns a read-only (constant) iterator that points one past the last element in the dimension array.
*
* @return an iterator.
*/
typename std::array<T, num_max_dimensions>::const_iterator cend() const
{
return end();
}
protected:
/** Protected destructor. */
~Dimensions() = default;
std::array<T, num_max_dimensions> _id;
size_t _num_dimensions{0};
};
/** Check that given dimensions are equal.
*
* @param[in] lhs Left-hand side Dimensions.
* @param[in] rhs Right-hand side Dimensions.
*
* @return True if the given dimensions are equal.
*/
template <typename T>
inline bool operator==(const Dimensions<T> &lhs, const Dimensions<T> &rhs)
{
return ((lhs.num_dimensions() == rhs.num_dimensions()) && std::equal(lhs.cbegin(), lhs.cend(), rhs.cbegin()));
}
/** Check that given dimensions are not equal.
*
* @param[in] lhs Left-hand side Dimensions.
* @param[in] rhs Right-hand side Dimensions.
*
* @return True if the given dimensions are not equal.
*/
template <typename T>
inline bool operator!=(const Dimensions<T> &lhs, const Dimensions<T> &rhs)
{
return !(lhs == rhs);
}
} // namespace arm_compute
#endif /*ARM_COMPUTE_DIMENSIONS_H*/
|