1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
/*
* Copyright (c) 2016-2021, 2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_HELPERS_H
#define ARM_COMPUTE_HELPERS_H
#include "arm_compute/core/Error.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <array>
#include <cstddef>
#include <cstdint>
#include <tuple>
namespace arm_compute
{
class IKernel;
class ITensor;
class ITensorInfo;
/** Iterator updated by @ref execute_window_loop for each window element */
class Iterator
{
public:
/** Default constructor to create an empty iterator */
constexpr Iterator();
/** Create a container iterator for the metadata and allocation contained in the ITensor
*
* @param[in] tensor The tensor to associate to the iterator.
* @param[in] window The window which will be used to iterate over the tensor.
*/
Iterator(const ITensor *tensor, const Window &window);
/** Create a container iterator for the tensor with the specified number of dimensions, stride, buffer pointer and window.
*
* @param[in] num_dims The number of dimensions.
* @param[in] strides The strides in bytes.
* @param[in] buffer The data buffer.
* @param[in] offset The offset in bytes from the beginning of the buffer to the first element of the tensor.
* @param[in] window The window which will be used to iterate over the tensor.
*/
Iterator(size_t num_dims, const Strides &strides, uint8_t *buffer, size_t offset, const Window &window);
/** Increment the iterator along the specified dimension of the step value associated to the dimension.
*
* @warning It is the caller's responsibility to call increment(dimension+1) when reaching the end of a dimension, the iterator will not check for overflow.
*
* @note When incrementing a dimension 'n' the coordinates of all the dimensions in the range (0,n-1) are reset. For example if you iterate over a 2D image, everytime you change row (dimension 1), the iterator for the width (dimension 0) is reset to its start.
*
* @param[in] dimension Dimension to increment
*/
void increment(size_t dimension);
/** Return the offset in bytes from the first element to the current position of the iterator
*
* @return The current position of the iterator in bytes relative to the first element.
*/
constexpr size_t offset() const;
/** Return a pointer to the current pixel.
*
* @warning Only works if the iterator was created with an ITensor.
*
* @return equivalent to buffer() + offset()
*/
constexpr uint8_t *ptr() const;
/** Move the iterator back to the beginning of the specified dimension.
*
* @param[in] dimension Dimension to reset
*/
void reset(size_t dimension);
private:
/** Initialize a container iterator for the tensor with the specified number of dimensions, stride, buffer pointer and window.
*
* @param[in] num_dims The number of dimensions.
* @param[in] strides The strides in bytes.
* @param[in] buffer The data buffer.
* @param[in] offset The offset in bytes from the beginning of the buffer to the first element of the tensor.
* @param[in] window The window which will be used to iterate over the tensor.
*/
void initialize(size_t num_dims, const Strides &strides, uint8_t *buffer, size_t offset, const Window &window);
uint8_t *_ptr;
class Dimension
{
public:
constexpr Dimension() : _dim_start(0), _stride(0)
{
}
size_t _dim_start;
size_t _stride;
};
std::array<Dimension, Coordinates::num_max_dimensions> _dims;
};
/** Iterate through the passed window, automatically adjusting the iterators and calling the lambda_functino for each element.
* It passes the x and y positions to the lambda_function for each iteration
*
* @param[in] w Window to iterate through.
* @param[in] lambda_function The function of type void(function)( const Coordinates & id ) to call at each iteration.
* Where id represents the absolute coordinates of the item to process.
* @param[in,out] iterators Tensor iterators which will be updated by this function before calling lambda_function.
*/
template <typename L, typename... Ts>
inline void execute_window_loop(const Window &w, L &&lambda_function, Ts &&...iterators);
/** Permutes given Dimensions according to a permutation vector
*
* @warning Validity of permutation is not checked
*
* @param[in, out] dimensions Dimensions to permute
* @param[in] perm Permutation vector
*/
template <typename T>
inline void permute(Dimensions<T> &dimensions, const PermutationVector &perm)
{
auto dimensions_copy = utility::make_array<Dimensions<T>::num_max_dimensions>(dimensions.begin(), dimensions.end());
for (unsigned int i = 0; i < perm.num_dimensions(); ++i)
{
T dimension_val = (perm[i] < dimensions.num_dimensions()) ? dimensions_copy[perm[i]] : 0;
dimensions.set(i, dimension_val);
}
}
/** Permutes given TensorShape according to a permutation vector
*
* @warning Validity of permutation is not checked
*
* @param[in, out] shape Shape to permute
* @param[in] perm Permutation vector
*/
inline void permute(TensorShape &shape, const PermutationVector &perm)
{
TensorShape shape_copy = shape;
for (unsigned int i = 0; i < perm.num_dimensions(); ++i)
{
size_t dimension_val = (perm[i] < shape.num_dimensions()) ? shape_copy[perm[i]] : 1;
shape.set(i, dimension_val, false, false); // Avoid changes in _num_dimension
}
}
/** Helper function to calculate the Valid Region for Scale.
*
* @param[in] src_info Input tensor info used to check.
* @param[in] dst_shape Shape of the output.
* @param[in] interpolate_policy Interpolation policy.
* @param[in] sampling_policy Sampling policy.
* @param[in] border_undefined True if the border is undefined.
*
* @return The corresponding valid region
*/
ValidRegion calculate_valid_region_scale(const ITensorInfo &src_info,
const TensorShape &dst_shape,
InterpolationPolicy interpolate_policy,
SamplingPolicy sampling_policy,
bool border_undefined);
/** Convert a linear index into n-dimensional coordinates.
*
* @param[in] shape Shape of the n-dimensional tensor.
* @param[in] index Linear index specifying the i-th element.
*
* @return n-dimensional coordinates.
*/
inline Coordinates index2coords(const TensorShape &shape, int index);
/** Convert n-dimensional coordinates into a linear index.
*
* @param[in] shape Shape of the n-dimensional tensor.
* @param[in] coord N-dimensional coordinates.
*
* @return linead index
*/
inline int coords2index(const TensorShape &shape, const Coordinates &coord);
/** Returns a static map used to find an index or dimension based on a data layout
*
* *** Layouts ***
*
* *** 4D ***
* [N C H W]
* [3 2 1 0]
* [N H W C]
*
* * *** 5D ***
* [N C D H W]
* [4 3 2 1 0]
* [N D H W C]
*/
const std::map<DataLayout, std::vector<DataLayoutDimension>> &get_layout_map();
/** Get the index of the given dimension.
*
* @param[in] data_layout The data layout.
* @param[in] data_layout_dimension The dimension which this index is requested for.
*
* @return The int conversion of the requested data layout index.
*/
inline size_t get_data_layout_dimension_index(const DataLayout &data_layout,
const DataLayoutDimension &data_layout_dimension);
/** Get the DataLayoutDimension of a given index and layout.
*
* @param[in] data_layout The data layout.
* @param[in] index The data layout index.
*
* @return The dimension which this index is requested for.
*/
inline DataLayoutDimension get_index_data_layout_dimension(const DataLayout &data_layout, const size_t index);
/** Calculate the number of output tiles required by Winograd Convolution layer. This utility function can be used by the Winograd input transform
* to know the number of tiles on the x and y direction
*
* @param[in] in_dims Spatial dimensions of the input tensor of convolution layer
* @param[in] kernel_size Kernel size
* @param[in] output_tile_size Size of a single output tile
* @param[in] conv_info Convolution info (i.e. pad, stride,...)
*
* @return the number of output tiles along the x and y directions of size "output_tile_size"
*/
inline Size2D compute_winograd_convolution_tiles(const Size2D &in_dims,
const Size2D &kernel_size,
const Size2D &output_tile_size,
const PadStrideInfo &conv_info)
{
int num_tiles_x =
std::ceil((in_dims.width - (kernel_size.width - 1) + conv_info.pad_left() + conv_info.pad_right()) /
static_cast<float>(output_tile_size.width));
int num_tiles_y =
std::ceil((in_dims.height - (kernel_size.height - 1) + conv_info.pad_top() + conv_info.pad_bottom()) /
static_cast<float>(output_tile_size.height));
// Clamp in case we provide paddings but we have 1D convolution
num_tiles_x = std::min(num_tiles_x, static_cast<int>(in_dims.width));
num_tiles_y = std::min(num_tiles_y, static_cast<int>(in_dims.height));
return Size2D(num_tiles_x, num_tiles_y);
}
/** Wrap-around a number within the range 0 <= x < m
*
* @param[in] x Input value
* @param[in] m Range
*
* @return the wrapped-around number
*/
template <typename T>
inline T wrap_around(T x, T m)
{
return x >= 0 ? x % m : (x % m + m) % m;
}
/** Convert negative coordinates to positive in the range [0, num_dims_input]
*
* @param[out] coords Array of coordinates to be converted.
* @param[in] max_value Maximum value to be used when wrapping the negative values in coords
*/
inline Coordinates &convert_negative_axis(Coordinates &coords, int max_value)
{
for (unsigned int i = 0; i < coords.num_dimensions(); ++i)
{
coords[i] = wrap_around(coords[i], max_value);
}
return coords;
}
} // namespace arm_compute
#include "arm_compute/core/Helpers.inl"
#endif /*ARM_COMPUTE_HELPERS_H */
|