1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
/*
* Copyright (c) 2016-2021, 2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/Error.h"
#include <cmath>
#include <numeric>
namespace arm_compute
{
template <size_t dimension>
struct IncrementIterators
{
template <typename T, typename... Ts>
static void unroll(T &&it, Ts &&...iterators)
{
auto increment = [](T &&it) { it.increment(dimension); };
utility::for_each(increment, std::forward<T>(it), std::forward<Ts>(iterators)...);
}
static void unroll()
{
// End of recursion
}
};
template <size_t dim>
struct ForEachDimension
{
template <typename L, typename... Ts>
static void unroll(const Window &w, Coordinates &id, L &&lambda_function, Ts &&...iterators)
{
const auto &d = w[dim - 1];
for (auto v = d.start(); v < d.end(); v += d.step(), IncrementIterators<dim - 1>::unroll(iterators...))
{
id.set(dim - 1, v);
ForEachDimension<dim - 1>::unroll(w, id, lambda_function, iterators...);
}
}
};
template <>
struct ForEachDimension<0>
{
template <typename L, typename... Ts>
static void unroll(const Window &w, Coordinates &id, L &&lambda_function, Ts &&...iterators)
{
ARM_COMPUTE_UNUSED(w, iterators...);
lambda_function(id);
}
};
template <typename L, typename... Ts>
inline void execute_window_loop(const Window &w, L &&lambda_function, Ts &&...iterators)
{
w.validate();
for (unsigned int i = 0; i < Coordinates::num_max_dimensions; ++i)
{
ARM_COMPUTE_ERROR_ON(w[i].step() == 0);
}
Coordinates id;
ForEachDimension<Coordinates::num_max_dimensions>::unroll(w, id, std::forward<L>(lambda_function),
std::forward<Ts>(iterators)...);
}
inline constexpr Iterator::Iterator() : _ptr(nullptr), _dims()
{
}
inline Iterator::Iterator(const ITensor *tensor, const Window &win) : Iterator()
{
ARM_COMPUTE_ERROR_ON(tensor == nullptr);
ARM_COMPUTE_ERROR_ON(tensor->info() == nullptr);
initialize(tensor->info()->num_dimensions(), tensor->info()->strides_in_bytes(), tensor->buffer(),
tensor->info()->offset_first_element_in_bytes(), win);
}
inline Iterator::Iterator(size_t num_dims, const Strides &strides, uint8_t *buffer, size_t offset, const Window &win)
: Iterator()
{
initialize(num_dims, strides, buffer, offset, win);
}
inline void
Iterator::initialize(size_t num_dims, const Strides &strides, uint8_t *buffer, size_t offset, const Window &win)
{
ARM_COMPUTE_ERROR_ON(buffer == nullptr);
_ptr = buffer + offset;
//Initialize the stride for each dimension and calculate the position of the first element of the iteration:
for (unsigned int n = 0; n < num_dims; ++n)
{
_dims[n]._stride = win[n].step() * strides[n];
std::get<0>(_dims)._dim_start += static_cast<size_t>(strides[n]) * win[n].start();
}
//Copy the starting point to all the dimensions:
for (unsigned int n = 1; n < Coordinates::num_max_dimensions; ++n)
{
_dims[n]._dim_start = std::get<0>(_dims)._dim_start;
}
ARM_COMPUTE_ERROR_ON_WINDOW_DIMENSIONS_GTE(win, num_dims);
}
inline void Iterator::increment(const size_t dimension)
{
ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions);
_dims[dimension]._dim_start += _dims[dimension]._stride;
for (unsigned int n = 0; n < dimension; ++n)
{
_dims[n]._dim_start = _dims[dimension]._dim_start;
}
}
inline constexpr size_t Iterator::offset() const
{
return _dims.at(0)._dim_start;
}
inline constexpr uint8_t *Iterator::ptr() const
{
return _ptr + _dims.at(0)._dim_start;
}
inline void Iterator::reset(const size_t dimension)
{
ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions - 1);
_dims[dimension]._dim_start = _dims[dimension + 1]._dim_start;
for (unsigned int n = 0; n < dimension; ++n)
{
_dims[n]._dim_start = _dims[dimension]._dim_start;
}
}
inline Coordinates index2coords(const TensorShape &shape, int index)
{
int num_elements = shape.total_size();
ARM_COMPUTE_ERROR_ON_MSG(index < 0 || index >= num_elements, "Index has to be in [0, num_elements]!");
ARM_COMPUTE_ERROR_ON_MSG(num_elements == 0, "Cannot create coordinate from empty shape!");
Coordinates coord{0};
for (int d = shape.num_dimensions() - 1; d >= 0; --d)
{
num_elements /= shape[d];
coord.set(d, index / num_elements);
index %= num_elements;
}
return coord;
}
inline int coords2index(const TensorShape &shape, const Coordinates &coord)
{
int num_elements = shape.total_size();
ARM_COMPUTE_UNUSED(num_elements);
ARM_COMPUTE_ERROR_ON_MSG(num_elements == 0, "Cannot create linear index from empty shape!");
int index = 0;
int stride = 1;
for (unsigned int d = 0; d < coord.num_dimensions(); ++d)
{
index += coord[d] * stride;
stride *= shape[d];
}
return index;
}
inline size_t get_data_layout_dimension_index(const DataLayout &data_layout,
const DataLayoutDimension &data_layout_dimension)
{
ARM_COMPUTE_ERROR_ON_MSG(data_layout == DataLayout::UNKNOWN,
"Cannot retrieve the dimension index for an unknown layout!");
const auto &dims = get_layout_map().at(data_layout);
const auto &it = std::find(dims.cbegin(), dims.cend(), data_layout_dimension);
ARM_COMPUTE_ERROR_ON_MSG(it == dims.cend(), "Invalid dimension for the given layout.");
return it - dims.cbegin();
}
inline DataLayoutDimension get_index_data_layout_dimension(const DataLayout &data_layout, const size_t index)
{
ARM_COMPUTE_ERROR_ON_MSG(data_layout == DataLayout::UNKNOWN,
"Cannot retrieve the layout dimension for an unknown layout!");
const auto &dims = get_layout_map().at(data_layout);
ARM_COMPUTE_ERROR_ON_MSG(index >= dims.size(), "Invalid index for the given layout.");
return dims[index];
}
} // namespace arm_compute
|