1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
|
/*
* Copyright (c) 2016-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_UTILS_H
#define ARM_COMPUTE_UTILS_H
#include "arm_compute/core/Error.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/Types.h"
#include <cmath>
#include <numeric>
#include <sstream>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <utility>
/* Convenience / backwards compatibility includes */
#include "arm_compute/core/utils/ActivationFunctionUtils.h"
#include "arm_compute/core/utils/DataLayoutUtils.h"
#include "arm_compute/core/utils/DataTypeUtils.h"
#include "arm_compute/core/utils/FormatUtils.h"
#include "arm_compute/core/utils/InterpolationPolicyUtils.h"
#include "arm_compute/core/utils/StringUtils.h"
namespace arm_compute
{
class ITensor;
class ITensorInfo;
class ActivationLayerInfo;
/** Load an entire file in memory
*
* @param[in] filename Name of the file to read.
* @param[in] binary Is it a binary file ?
*
* @return The content of the file.
*/
std::string read_file(const std::string &filename, bool binary);
/** Permutes the given dimensions according the permutation vector
*
* @param[in,out] dimensions Dimensions to be permuted.
* @param[in] perm Vector describing the permutation.
*
*/
template <typename T>
inline void permute_strides(Dimensions<T> &dimensions, const PermutationVector &perm)
{
const auto old_dim = utility::make_array<Dimensions<T>::num_max_dimensions>(dimensions.begin(), dimensions.end());
for (unsigned int i = 0; i < perm.num_dimensions(); ++i)
{
T dimension_val = old_dim[i];
dimensions.set(perm[i], dimension_val);
}
}
/** Calculate padding requirements in case of SAME padding
*
* @param[in] input_shape Input shape
* @param[in] weights_shape Weights shape
* @param[in] conv_info Convolution information (containing strides)
* @param[in] data_layout (Optional) Data layout of the input and weights tensor
* @param[in] dilation (Optional) Dilation factor used in the convolution.
* @param[in] rounding_type (Optional) Dimension rounding type when down-scaling.
*
* @return PadStrideInfo for SAME padding
*/
PadStrideInfo calculate_same_pad(TensorShape input_shape,
TensorShape weights_shape,
PadStrideInfo conv_info,
DataLayout data_layout = DataLayout::NCHW,
const Size2D &dilation = Size2D(1u, 1u),
const DimensionRoundingType &rounding_type = DimensionRoundingType::FLOOR);
/** Returns expected width and height of the deconvolution's output tensor.
*
* @param[in] in_width Width of input tensor (Number of columns)
* @param[in] in_height Height of input tensor (Number of rows)
* @param[in] kernel_width Kernel width.
* @param[in] kernel_height Kernel height.
* @param[in] pad_stride_info Pad and stride information.
*
* @return A pair with the new width in the first position and the new height in the second.
*/
std::pair<unsigned int, unsigned int> deconvolution_output_dimensions(unsigned int in_width,
unsigned int in_height,
unsigned int kernel_width,
unsigned int kernel_height,
const PadStrideInfo &pad_stride_info);
/** Returns expected width and height of output scaled tensor depending on dimensions rounding mode.
*
* @param[in] width Width of input tensor (Number of columns)
* @param[in] height Height of input tensor (Number of rows)
* @param[in] kernel_width Kernel width.
* @param[in] kernel_height Kernel height.
* @param[in] pad_stride_info Pad and stride information.
* @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
*
* @return A pair with the new width in the first position and the new height in the second.
*/
std::pair<unsigned int, unsigned int> scaled_dimensions(int width,
int height,
int kernel_width,
int kernel_height,
const PadStrideInfo &pad_stride_info,
const Size2D &dilation = Size2D(1U, 1U));
/** Returns calculated width and height of output scaled tensor depending on dimensions rounding mode.
*
* @param[in] width Width of input tensor (Number of columns)
* @param[in] height Height of input tensor (Number of rows)
* @param[in] kernel_width Kernel width.
* @param[in] kernel_height Kernel height.
* @param[in] pad_stride_info Pad and stride information.
*
* @return A pair with the new width in the first position and the new height in the second, returned values can be < 1
*/
std::pair<int, int> scaled_dimensions_signed(
int width, int height, int kernel_width, int kernel_height, const PadStrideInfo &pad_stride_info);
/** Returns calculated width, height and depth of output scaled tensor depending on dimensions rounding mode.
*
* @param[in] width Width of input tensor
* @param[in] height Height of input tensor
* @param[in] depth Depth of input tensor
* @param[in] kernel_width Kernel width.
* @param[in] kernel_height Kernel height.
* @param[in] kernel_depth Kernel depth.
* @param[in] pool3d_info Pad and stride and round information for 3d pooling
*
* @return A tuple with the new width in the first position, the new height in the second, and the new depth in the third.
* Returned values can be < 1
*/
std::tuple<int, int, int> scaled_3d_dimensions_signed(int width,
int height,
int depth,
int kernel_width,
int kernel_height,
int kernel_depth,
const Pooling3dLayerInfo &pool3d_info);
/** Check if the given reduction operation should be handled in a serial way.
*
* @param[in] op Reduction operation to perform
* @param[in] dt Data type
* @param[in] axis Axis along which to reduce
*
* @return True if the given reduction operation should be handled in a serial way.
*/
bool needs_serialized_reduction(ReductionOperation op, DataType dt, unsigned int axis);
/** Returns output quantization information for softmax layer
*
* @param[in] input_type The data type of the input tensor
* @param[in] is_log True for log softmax
*
* @return Quantization information for the output tensor
*/
QuantizationInfo get_softmax_output_quantization_info(DataType input_type, bool is_log);
/** Returns a pair of minimum and maximum values for a quantized activation
*
* @param[in] act_info The information for activation
* @param[in] data_type The used data type
* @param[in] oq_info The output quantization information
*
* @return The pair with minimum and maximum values
*/
std::pair<int32_t, int32_t> get_quantized_activation_min_max(const ActivationLayerInfo &act_info,
DataType data_type,
UniformQuantizationInfo oq_info);
/** Convert a channel identity into a string.
*
* @param[in] channel @ref Channel to be translated to string.
*
* @return The string describing the channel.
*/
const std::string &string_from_channel(Channel channel);
/** Translates a given border mode policy to a string.
*
* @param[in] border_mode @ref BorderMode to be translated to string.
*
* @return The string describing the border mode.
*/
const std::string &string_from_border_mode(BorderMode border_mode);
/** Translates a given normalization type to a string.
*
* @param[in] type @ref NormType to be translated to string.
*
* @return The string describing the normalization type.
*/
const std::string &string_from_norm_type(NormType type);
/** Translates a given pooling type to a string.
*
* @param[in] type @ref PoolingType to be translated to string.
*
* @return The string describing the pooling type.
*/
const std::string &string_from_pooling_type(PoolingType type);
/** Check if the pool region is entirely outside the input tensor
*
* @param[in] info @ref PoolingLayerInfo to be checked.
*
* @return True if the pool region is entirely outside the input tensor, False otherwise.
*/
bool is_pool_region_entirely_outside_input(const PoolingLayerInfo &info);
/** Check if the 3d pool region is entirely outside the input tensor
*
* @param[in] info @ref Pooling3dLayerInfo to be checked.
*
* @return True if the pool region is entirely outside the input tensor, False otherwise.
*/
bool is_pool_3d_region_entirely_outside_input(const Pooling3dLayerInfo &info);
/** Check if the 3D padding is symmetric i.e. padding in each opposite sides are euqal (left=right, top=bottom and front=back)
*
* @param[in] info @ref Padding3D input 3D padding object to check if it is symmetric
*
* @return True if padding is symmetric
*/
inline bool is_symmetric(const Padding3D &info)
{
return ((info.left == info.right) && (info.top == info.bottom) && (info.front == info.back));
}
/** Translates a given GEMMLowp output stage to a string.
*
* @param[in] output_stage @ref GEMMLowpOutputStageInfo to be translated to string.
*
* @return The string describing the GEMMLowp output stage
*/
const std::string &string_from_gemmlowp_output_stage(GEMMLowpOutputStageType output_stage);
/** Convert a PixelValue to a string, represented through the specific data type
*
* @param[in] value The PixelValue to convert
* @param[in] data_type The type to be used to convert the @p value
*
* @return String representation of the PixelValue through the given data type.
*/
std::string string_from_pixel_value(const PixelValue &value, const DataType data_type);
/** Stores padding information before configuring a kernel
*
* @param[in] infos list of tensor infos to store the padding info for
*
* @return An unordered map where each tensor info pointer is paired with its original padding info
*/
std::unordered_map<const ITensorInfo *, PaddingSize> get_padding_info(std::initializer_list<const ITensorInfo *> infos);
/** Stores padding information before configuring a kernel
*
* @param[in] tensors list of tensors to store the padding info for
*
* @return An unordered map where each tensor info pointer is paired with its original padding info
*/
std::unordered_map<const ITensorInfo *, PaddingSize> get_padding_info(std::initializer_list<const ITensor *> tensors);
/** Check if the previously stored padding info has changed after configuring a kernel
*
* @param[in] padding_map an unordered map where each tensor info pointer is paired with its original padding info
*
* @return true if any of the tensor infos has changed its paddings
*/
bool has_padding_changed(const std::unordered_map<const ITensorInfo *, PaddingSize> &padding_map);
/** Returns the number of elements required to go from start to end with the wanted step
*
* @param[in] start start value
* @param[in] end end value
* @param[in] step step value between each number in the wanted sequence
*
* @return number of elements to go from start value to end value using the wanted step
*/
inline size_t num_of_elements_in_range(const float start, const float end, const float step)
{
ARM_COMPUTE_ERROR_ON_MSG(step == 0, "Range Step cannot be 0");
return size_t(std::ceil((end - start) / step));
}
#ifdef ARM_COMPUTE_ASSERTS_ENABLED
/** Print consecutive elements to an output stream.
*
* @param[out] s Output stream to print the elements to.
* @param[in] ptr Pointer to print the elements from.
* @param[in] n Number of elements to print.
* @param[in] stream_width (Optional) Width of the stream. If set to 0 the element's width is used. Defaults to 0.
* @param[in] element_delim (Optional) Delimeter among the consecutive elements. Defaults to space delimeter
*/
template <typename T>
void print_consecutive_elements_impl(
std::ostream &s, const T *ptr, unsigned int n, int stream_width = 0, const std::string &element_delim = " ")
{
using print_type = typename std::conditional<std::is_floating_point<T>::value, T, int>::type;
std::ios stream_status(nullptr);
stream_status.copyfmt(s);
for (unsigned int i = 0; i < n; ++i)
{
// Set stream width as it is not a "sticky" stream manipulator
if (stream_width != 0)
{
s.width(stream_width);
}
if (std::is_same<typename std::decay<T>::type, half>::value)
{
// We use T instead of print_type here is because the std::is_floating_point<half> returns false and then the print_type becomes int.
s << std::right << static_cast<T>(ptr[i]) << element_delim;
}
else if (std::is_same<typename std::decay<T>::type, bfloat16>::value)
{
// We use T instead of print_type here is because the std::is_floating_point<bfloat16> returns false and then the print_type becomes int.
s << std::right << float(ptr[i]) << element_delim;
}
else
{
s << std::right << static_cast<print_type>(ptr[i]) << element_delim;
}
}
// Restore output stream flags
s.copyfmt(stream_status);
}
/** Identify the maximum width of n consecutive elements.
*
* @param[in] s The output stream which will be used to print the elements. Used to extract the stream format.
* @param[in] ptr Pointer to the elements.
* @param[in] n Number of elements.
*
* @return The maximum width of the elements.
*/
template <typename T>
int max_consecutive_elements_display_width_impl(std::ostream &s, const T *ptr, unsigned int n)
{
using print_type = typename std::conditional<std::is_floating_point<T>::value, T, int>::type;
int max_width = -1;
for (unsigned int i = 0; i < n; ++i)
{
std::stringstream ss;
ss.copyfmt(s);
if (std::is_same<typename std::decay<T>::type, half>::value)
{
// We use T instead of print_type here is because the std::is_floating_point<half> returns false and then the print_type becomes int.
ss << static_cast<T>(ptr[i]);
}
else if (std::is_same<typename std::decay<T>::type, bfloat16>::value)
{
// We use T instead of print_type here is because the std::is_floating_point<bfloat> returns false and then the print_type becomes int.
ss << float(ptr[i]);
}
else
{
ss << static_cast<print_type>(ptr[i]);
}
max_width = std::max<int>(max_width, ss.str().size());
}
return max_width;
}
/** Print consecutive elements to an output stream.
*
* @param[out] s Output stream to print the elements to.
* @param[in] dt Data type of the elements
* @param[in] ptr Pointer to print the elements from.
* @param[in] n Number of elements to print.
* @param[in] stream_width (Optional) Width of the stream. If set to 0 the element's width is used. Defaults to 0.
* @param[in] element_delim (Optional) Delimeter among the consecutive elements. Defaults to space delimeter
*/
void print_consecutive_elements(std::ostream &s,
DataType dt,
const uint8_t *ptr,
unsigned int n,
int stream_width,
const std::string &element_delim = " ");
/** Identify the maximum width of n consecutive elements.
*
* @param[in] s Output stream to print the elements to.
* @param[in] dt Data type of the elements
* @param[in] ptr Pointer to print the elements from.
* @param[in] n Number of elements to print.
*
* @return The maximum width of the elements.
*/
int max_consecutive_elements_display_width(std::ostream &s, DataType dt, const uint8_t *ptr, unsigned int n);
#endif /* ARM_COMPUTE_ASSERTS_ENABLED */
} // namespace arm_compute
#endif /*ARM_COMPUTE_UTILS_H */
|