1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
/*
* Copyright (c) 2016-2020, 2022-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ACL_ARM_COMPUTE_CORE_WINDOW_INL
#define ACL_ARM_COMPUTE_CORE_WINDOW_INL
namespace arm_compute
{
inline Window::Window(const Window &src)
: _dims(), _is_broadcasted(utility::generate_array<bool, Coordinates::num_max_dimensions, false>::value)
{
for (size_t i = 0; i < Coordinates::num_max_dimensions; ++i)
{
set(i, src[i]);
_is_broadcasted[i] = src.is_broadcasted(i);
}
}
inline Window &Window::operator=(const arm_compute::Window &rhs)
{
Window tmp(rhs);
swap(*this, tmp);
return *this;
}
inline constexpr const Window::Dimension &Window::operator[](size_t dimension) const
{
// Precondition: dimension < Coordinates::num_max_dimensions
return _dims.at(dimension);
}
inline void Window::set(size_t dimension, const Window::Dimension &dim)
{
ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions);
_dims[dimension] = dim;
}
inline void Window::set_broadcasted(size_t dimension)
{
ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions);
set(dimension, Dimension(0, 0, 0));
_is_broadcasted[dimension] = true;
}
inline bool Window::is_broadcasted(size_t dimension) const
{
ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions);
return _is_broadcasted[dimension];
}
inline Window Window::collapse_if_possible(const Window &full_window,
const size_t first,
const size_t last,
bool *has_collapsed) const
{
Window collapsed(*this);
bool is_collapsable = true;
int collapsed_end = _dims[first].end();
for (size_t d = first + 1; is_collapsable && (d < last); ++d)
{
// The _dims's dimension must match the full _dims dimension to be collapsable:
is_collapsable = (_dims[d].start() == 0) && (full_window[d].start() == 0) && (_dims[d].step() <= 1) &&
(full_window[d].end() == _dims[d].end());
collapsed_end *= _dims[d].end();
}
if (is_collapsable)
{
collapsed._dims.at(first).set_end(collapsed_end);
for (size_t d = first + 1; is_collapsable && (d < last); ++d)
{
collapsed.set(d, Dimension());
}
}
if (has_collapsed != nullptr)
{
*has_collapsed = is_collapsable;
}
return collapsed;
}
inline Window Window::shift_dimensions(unsigned int shift_value, unsigned int start_dim) const
{
Window shifted_window;
size_t n = 0;
for (; n < start_dim; ++n)
{
shifted_window.set(n, _dims[n]);
}
for (; n < (Coordinates::num_max_dimensions - shift_value); n++)
{
shifted_window.set(n, _dims[n + shift_value]);
}
return shifted_window;
}
inline Window Window::collapse(const Window &full_window, const size_t first, const size_t last) const
{
bool has_collapsed = false;
Window collapsed = collapse_if_possible(full_window, first, last, &has_collapsed);
// Make sure that the window has collapsed
ARM_COMPUTE_ERROR_ON(!has_collapsed);
return collapsed;
}
inline Window Window::broadcast_if_dimension_le_one(const TensorShape &shape) const
{
Window broadcastWin(*this);
for (size_t d = 0; d < TensorShape::num_max_dimensions; ++d)
{
if (shape[d] <= 1)
{
broadcastWin.set_broadcasted(d);
}
}
return broadcastWin;
}
inline void Window::shift(size_t dimension, int shift_value)
{
ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions);
Window::Dimension &d = _dims[dimension];
d = Window::Dimension(d.start() + shift_value, d.end() + shift_value, d.step());
}
inline void Window::adjust(size_t dimension, int adjust_value, bool is_at_start)
{
ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions);
Window::Dimension &d = _dims[dimension];
if (is_at_start)
{
d = Window::Dimension(d.start() + adjust_value, d.end(), d.step());
}
else
{
d = Window::Dimension(d.start(), d.end() + adjust_value, d.step());
}
}
inline void Window::scale(size_t dimension, float scale_value)
{
ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions);
Window::Dimension &d = _dims[dimension];
const int scaled_step = d.step() * scale_value;
const int scaled_start = d.start() * scale_value;
const int scaled_diff = (d.end() - d.start()) * scale_value;
const int scaled_end = scaled_start + ceil_to_multiple(scaled_diff, scaled_step);
d = Window::Dimension(scaled_start, scaled_end, scaled_step);
}
inline void Window::set_dimension_step(size_t dimension, int step)
{
ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions);
_dims[dimension].set_step(step);
}
inline void Window::validate() const
{
for (size_t i = 0; i < Coordinates::num_max_dimensions; ++i)
{
ARM_COMPUTE_ERROR_ON(_dims[i].end() < _dims[i].start());
ARM_COMPUTE_ERROR_ON((_dims[i].step() != 0) && (((_dims[i].end() - _dims[i].start()) % _dims[i].step()) != 0));
}
}
inline constexpr size_t Window::num_iterations(size_t dimension) const
{
// Precondition: dimension < Coordinates::num_max_dimensions
// Precondition: (end - start) % step == 0
return (_dims.at(dimension).end() - _dims.at(dimension).start()) / _dims.at(dimension).step();
}
inline Window Window::split_window(size_t dimension, size_t id, size_t total) const
{
ARM_COMPUTE_ERROR_ON(id >= total);
ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions);
Window out;
for (size_t d = 0; d < Coordinates::num_max_dimensions; ++d)
{
if (d == dimension)
{
int start = _dims[d].start();
int end = _dims[d].end();
const int step = _dims[d].step();
const int num_it = num_iterations(d);
const int rem = num_it % total;
int work = num_it / total;
int it_start = work * id;
if (int(id) < rem)
{
++work;
it_start += id;
}
else
{
it_start += rem;
}
start += it_start * step;
end = std::min(end, start + work * step);
out.set(d, Dimension(start, end, step));
}
else
{
out.set(d, _dims[d]);
}
}
return out;
}
template <unsigned int window_dimension>
inline bool Window::slide_window_slice(Window &slice) const
{
for (unsigned int n = window_dimension; n < Coordinates::num_max_dimensions; ++n)
{
// Did we reach the end of this dimension?
const int v = slice._dims[n].start() + 1;
if (v < _dims[n].end())
{
// No: increment
slice._dims[n] = Dimension(v, v + 1, 1);
// Reset lower dimensions:
for (unsigned int lower = window_dimension; lower < n; ++lower)
{
slice._dims[lower] = Dimension(_dims[lower].start(), _dims[lower].start() + 1, 1);
}
return true;
}
}
// It was the last slice
return false; // Iteration over
}
template <unsigned int window_dimension>
inline Window Window::first_slice_window() const
{
Window slice;
std::copy_n(_dims.begin(), window_dimension, slice._dims.begin());
//Initialise higher dimensions to be the first slice.
for (unsigned int n = window_dimension; n < Coordinates::num_max_dimensions; ++n)
{
slice._dims[n] = Dimension(_dims[n].start(), _dims[n].start() + 1, 1);
}
return slice;
}
inline void Window::use_tensor_dimensions(const TensorShape &shape, size_t first_dimension)
{
for (unsigned int n = first_dimension; n < shape.num_dimensions(); ++n)
{
set(n, Window::Dimension(0, std::max(shape[n], static_cast<size_t>(1))));
}
}
inline TensorShape Window::shape() const
{
TensorShape shape;
for (size_t d = 0; d < TensorShape::num_max_dimensions; ++d)
{
shape.set(d, (_dims[d].end() - _dims[d].start()) / _dims[d].step());
}
return shape;
}
inline size_t Window::num_iterations_total() const
{
size_t total = 1;
for (size_t d = 0; d < Coordinates::num_max_dimensions; ++d)
{
total *= num_iterations(d);
}
return total;
}
inline void swap(Window &lhs, Window &rhs)
{
lhs._dims.swap(rhs._dims);
}
inline bool operator==(const Window &lhs, const Window &rhs)
{
return (lhs._dims == rhs._dims) && (lhs._is_broadcasted == rhs._is_broadcasted);
}
} // namespace arm_compute
#endif // ACL_ARM_COMPUTE_CORE_WINDOW_INL
|