1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
/*
* Copyright (c) 2018-2021, 2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ACL_ARM_COMPUTE_GRAPH_TYPES_H
#define ACL_ARM_COMPUTE_GRAPH_TYPES_H
#include "arm_compute/core/Error.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/function_info/ActivationLayerInfo.h"
#include "arm_compute/function_info/ConvolutionInfo.h"
#include "arm_compute/function_info/FullyConnectedLayerInfo.h"
#include "arm_compute/function_info/GEMMInfo.h"
#include "arm_compute/runtime/CL/CLTunerTypes.h"
#include "arm_compute/runtime/CL/CLTypes.h"
#include <limits>
#include <string>
namespace arm_compute
{
namespace graph
{
using arm_compute::CLBackendType;
using arm_compute::CLTunerMode;
using arm_compute::Status;
using arm_compute::Coordinates;
using arm_compute::DataLayout;
using arm_compute::DataLayoutDimension;
using arm_compute::DataType;
using arm_compute::PermutationVector;
using arm_compute::PixelValue;
using arm_compute::Size2D;
using arm_compute::TensorShape;
using arm_compute::ActivationLayerInfo;
using arm_compute::DetectionOutputLayerInfo;
using arm_compute::DetectionPostProcessLayerInfo;
using arm_compute::DimensionRoundingType;
using arm_compute::FullyConnectedLayerInfo;
using arm_compute::InterpolationPolicy;
using arm_compute::NormalizationLayerInfo;
using arm_compute::NormType;
using arm_compute::PadStrideInfo;
using arm_compute::PoolingLayerInfo;
using arm_compute::PoolingType;
using arm_compute::PriorBoxLayerInfo;
using GraphID = unsigned int;
using TensorID = unsigned int;
using NodeID = unsigned int;
using EdgeID = unsigned int;
using Activation = arm_compute::ActivationLayerInfo::ActivationFunction;
/**< Constant TensorID specifying an equivalent of null tensor */
constexpr TensorID NullTensorID = std::numeric_limits<TensorID>::max();
/**< Constant NodeID specifying an equivalent of null node */
constexpr NodeID EmptyNodeID = std::numeric_limits<NodeID>::max();
/**< Constant EdgeID specifying an equivalent of null edge */
constexpr EdgeID EmptyEdgeID = std::numeric_limits<EdgeID>::max();
// Forward declarations
struct TensorDescriptor;
/** Graph configuration structure */
struct GraphConfig
{
bool use_function_memory_manager{true}; /**< Use a memory manager to manage per-function auxilary memory */
bool use_function_weights_manager{true}; /**< Use a weights manager to manage transformed weights */
bool use_transition_memory_manager{true}; /**< Use a memory manager to manager transition buffer memory */
bool use_tuner{false}; /**< Use a tuner in tunable backends */
bool use_synthetic_type{false}; /**< Convert graph to a synthetic graph for a data type */
DataType synthetic_type{DataType::QASYMM8}; /**< The data type of the synthetic graph */
CLTunerMode tuner_mode{CLTunerMode::EXHAUSTIVE}; /**< Tuner mode to be used by the CL tuner */
int num_threads{
-1}; /**< Number of threads to use (thread capable backends), if 0 the backend will auto-initialize, if -1 the backend will stay as it is. */
std::string tuner_file{"acl_tuner.csv"}; /**< File to load/store tuning values from */
std::string mlgo_file{"heuristics.mlgo"}; /**< Filename to load MLGO heuristics from */
CLBackendType backend_type{CLBackendType::Native}; /**< CL backend type to use */
};
/**< Device target types */
enum class Target
{
UNSPECIFIED, /**< Unspecified Target */
NEON, /**< Arm® Neon™ capable target device */
CL, /**< OpenCL capable target device */
CLVK, /**< CLVK capable target device */
};
/** Supported Element-wise operations */
enum class EltwiseOperation
{
Add, /**< Arithmetic addition */
Sub, /**< Arithmetic subtraction */
Mul, /**< Arithmetic multiplication */
Max, /**< Arithmetic maximum */
Div, /**< Arithmetic division */
Min, /**< Arithmetic minimum */
};
/** Supported Unary Element-wise operations */
enum class UnaryEltwiseOperation
{
Exp /**< Exp */
};
/** Supported Convolution layer methods */
enum class ConvolutionMethod
{
Default, /**< Default approach using internal heuristics */
GEMM, /**< GEMM based convolution */
Direct, /**< Deep direct convolution */
Winograd /**< Winograd based convolution */
};
/** Supported Depthwise Convolution layer methods */
enum class DepthwiseConvolutionMethod
{
Default, /**< Default approach using internal heuristics */
GEMV, /**< Generic GEMV based depthwise convolution */
Optimized3x3, /**< Optimized 3x3 direct depthwise convolution */
};
/** Enable or disable fast math for Convolution layer */
enum class FastMathHint
{
Enabled, /**< Fast math enabled for Convolution layer */
Disabled, /**< Fast math disabled for Convolution layer */
};
/** Supported nodes */
enum class NodeType
{
ActivationLayer,
ArgMinMaxLayer,
BatchNormalizationLayer,
BoundingBoxTransformLayer,
ChannelShuffleLayer,
ConcatenateLayer,
ConvolutionLayer,
DeconvolutionLayer,
DepthToSpaceLayer,
DepthwiseConvolutionLayer,
DequantizationLayer,
DetectionOutputLayer,
DetectionPostProcessLayer,
EltwiseLayer,
FlattenLayer,
FullyConnectedLayer,
FusedConvolutionBatchNormalizationLayer,
FusedDepthwiseConvolutionBatchNormalizationLayer,
GenerateProposalsLayer,
L2NormalizeLayer,
NormalizationLayer,
NormalizePlanarYUVLayer,
PadLayer,
PermuteLayer,
PoolingLayer,
PReluLayer,
PrintLayer,
PriorBoxLayer,
QuantizationLayer,
ReductionOperationLayer,
ReorgLayer,
ReshapeLayer,
ResizeLayer,
ROIAlignLayer,
SoftmaxLayer,
SliceLayer,
SplitLayer,
StackLayer,
StridedSliceLayer,
UpsampleLayer,
UnaryEltwiseLayer,
Input,
Output,
Const,
Dummy
};
/** Backend Memory Manager affinity **/
enum class MemoryManagerAffinity
{
Buffer, /**< Affinity at buffer level */
Offset /**< Affinity at offset level */
};
/** NodeID-index struct
*
* Used to describe connections
*/
struct NodeIdxPair
{
NodeID node_id; /**< Node ID */
size_t index; /**< Index */
};
/** Common node parameters */
struct NodeParams
{
std::string name; /**< Node name */
Target target; /**< Node target */
};
} // namespace graph
} // namespace arm_compute
#endif // ACL_ARM_COMPUTE_GRAPH_TYPES_H
|