1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
/*
* Copyright (c) 2017-2021, 2023-2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ACL_ARM_COMPUTE_RUNTIME_CL_FUNCTIONS_CLGEMMCONVOLUTIONLAYER_H
#define ACL_ARM_COMPUTE_RUNTIME_CL_FUNCTIONS_CLGEMMCONVOLUTIONLAYER_H
#include "arm_compute/function_info/ActivationLayerInfo.h"
#include "arm_compute/runtime/CL/CLTensor.h"
#include "arm_compute/runtime/CL/CLTypes.h"
#include "arm_compute/runtime/IFunction.h"
#include "arm_compute/runtime/IMemoryManager.h"
#include "arm_compute/runtime/IWeightsManager.h"
#include <memory>
namespace arm_compute
{
// Forward declarations
class CLCompileContext;
class ICLTensor;
class ITensorInfo;
/** Basic function to compute the convolution layer. This function calls the following OpenCL kernels/functions:
*
* -# opencl::ClGemmConv2d
*/
class CLGEMMConvolutionLayer : public IFunction
{
public:
/** Constructor
*
* @param[in] memory_manager (Optional) Memory manager.
* @param[in] weights_manager (Optional) Weights manager.
*/
CLGEMMConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager = nullptr,
IWeightsManager *weights_manager = nullptr);
/** Prevent instances of this class from being copied (As this class contains pointers) */
CLGEMMConvolutionLayer(const CLGEMMConvolutionLayer &) = delete;
/** Default move constructor */
CLGEMMConvolutionLayer(CLGEMMConvolutionLayer &&) = default;
/** Prevent instances of this class from being copied (As this class contains pointers) */
CLGEMMConvolutionLayer &operator=(const CLGEMMConvolutionLayer &) = delete;
/** Default move assignment operator */
CLGEMMConvolutionLayer &operator=(CLGEMMConvolutionLayer &&) = default;
/**Default destructor */
~CLGEMMConvolutionLayer();
/** Set the input and output tensors.
*
* Valid data layouts:
* - NHWC
* - NCHW
*
* Valid data type configurations:
* |src0 |src1 |src2 |dst |
* |:--------------|:------------------|:--------|:--------------|
* |F16 |F16 |F16 |F16 |
* |F32 |F32 |F32 |F32 |
* |QASYMM8 |QASYMM8 |S32 |QASYMM8 |
* |QASYMM8 |QSYMM8_PER_CHANNEL |S32 |QASYMM8 |
* |QASYMM8_SIGNED |QASYMM8_SIGNED |S32 |QASYMM8_SIGNED |
* |QASYMM8_SIGNED |QSYMM8_PER_CHANNEL |S32 |QASYMM8_SIGNED |
*
* @param[in] input Source tensor. 3 lower dimensions represent a single input [width, height, IFM],
* while every optional dimension from 4 and above represent a batch of inputs.
* Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
* @param[in] weights Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
* Data type supported: Same as @p input or QASYMM8/QSYMM8_PER_CHANNEL when @p input is QASYMM8 or QASYMM8_SIGNED/QSYMM8_PER_CHANNEL when @p input is QASYMM8_SIGNED.
* @param[in] biases Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM].
* Data type supported: Should match @p input data type, except for input of quantized type where biases should be of S32 type.
* @param[out] output Destination tensor. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
* Data types supported: Same as @p input.
* @param[in] conv_info Contains padding and stride information described in @ref PadStrideInfo.
* @param[in] weights_info Specifies if the weights tensor has been reshaped with CLWeightsReshapeKernel. If this is not part of the fully connected layer the weights
* tensor has also been transposed with CLGEMMReshapeRHSMatrixKernel. Data type supported: Same as @p input.
* @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
* @param[in] act_info (Optional) Activation layer information in case of a fused activation.
* @param[in] num_groups (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is only supported for NCHW data layout
*/
void configure(const ICLTensor *input,
const ICLTensor *weights,
const ICLTensor *biases,
ICLTensor *output,
const PadStrideInfo &conv_info,
const WeightsInfo &weights_info = WeightsInfo(),
const Size2D &dilation = Size2D(1U, 1U),
const ActivationLayerInfo &act_info = ActivationLayerInfo(),
unsigned int num_groups = 1);
/** Set the input and output tensors.
*
* @param[in] compile_context The compile context to be used.
* @param[in] input Source tensor. 3 lower dimensions represent a single input [width, height, IFM],
* while every optional dimension from 4 and above represent a batch of inputs.
* Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
* @param[in] weights Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
* Data type supported: Same as @p input or QASYMM8/QSYMM8_PER_CHANNEL when @p input is QASYMM8 or QASYMM8_SIGNED/QSYMM8_PER_CHANNEL when @p input is QASYMM8_SIGNED.
* @param[in] biases Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM].
* Data type supported: Should match @p input data type, except for input of quantized type where biases should be of S32 type.
* @param[out] output Destination tensor. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
* Data types supported: Same as @p input.
* @param[in] conv_info Contains padding and stride information described in @ref PadStrideInfo.
* @param[in] weights_info Specifies if the weights tensor has been reshaped with CLWeightsReshapeKernel. If this is not part of the fully connected layer the weights
* tensor has also been transposed with CLGEMMReshapeRHSMatrixKernel. Data type supported: Same as @p input.
* @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
* @param[in] act_info (Optional) Activation layer information in case of a fused activation.
* @param[in] num_groups (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is only supported for NCHW data layout
*/
void configure(const CLCompileContext &compile_context,
const ICLTensor *input,
const ICLTensor *weights,
const ICLTensor *biases,
ICLTensor *output,
const PadStrideInfo &conv_info,
const WeightsInfo &weights_info = WeightsInfo(),
const Size2D &dilation = Size2D(1U, 1U),
const ActivationLayerInfo &act_info = ActivationLayerInfo(),
unsigned int num_groups = 1);
/** Static function to check if given info will lead to a valid configuration of @ref CLGEMMConvolutionLayer.
*
* @param[in] input Source tensor. 3 lower dimensions represent a single input [width, height, IFM],
* while every optional dimension from 4 and above represent a batch of inputs.
* Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
* @param[in] weights Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
* Data type supported: Same as @p input or QASYMM8/QSYMM8_PER_CHANNEL when @p input is QASYMM8 or QASYMM8_SIGNED/QSYMM8_PER_CHANNEL when @p input is QASYMM8_SIGNED.
* @param[in] biases Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM].
* Data type supported: Should match @p input data type, except for input of quantized type where biases should be of S32 type.
* @param[out] output Destination tensor. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
* Data types supported: Same as @p input.
* @param[in] conv_info Contains padding and stride information described in @ref PadStrideInfo.
* @param[in] weights_info Specifies if the weights tensor has been reshaped with CLWeightsReshapeKernel. If this is not part of the fully connected layer the weights
* tensor has also been transposed with CLGEMMReshapeRHSMatrixKernel. Data type supported: Same as @p input.
* @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
* @param[in] act_info (Optional) Activation layer information in case of a fused activation.
* @param[in] num_groups (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is only supported for NCHW data layout
*
* @return a status
*/
static Status validate(const ITensorInfo *input,
const ITensorInfo *weights,
const ITensorInfo *biases,
const ITensorInfo *output,
const PadStrideInfo &conv_info,
const WeightsInfo &weights_info = WeightsInfo(),
const Size2D &dilation = Size2D(1U, 1U),
const ActivationLayerInfo &act_info = ActivationLayerInfo(),
unsigned int num_groups = 1);
// Inherited methods overridden:
void run() override;
void prepare() override;
private:
struct Impl;
std::unique_ptr<Impl> _impl;
};
} // namespace arm_compute
#endif // ACL_ARM_COMPUTE_RUNTIME_CL_FUNCTIONS_CLGEMMCONVOLUTIONLAYER_H
|