1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
/*
* Copyright (c) 2019-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_CLLSTMLAYERQUANTIZED_H
#define ARM_COMPUTE_CLLSTMLAYERQUANTIZED_H
#include "arm_compute/core/Types.h"
#include "arm_compute/runtime/CL/functions/CLActivationLayer.h"
#include "arm_compute/runtime/CL/functions/CLConcatenateLayer.h"
#include "arm_compute/runtime/CL/functions/CLDequantizationLayer.h"
#include "arm_compute/runtime/CL/functions/CLElementwiseOperations.h"
#include "arm_compute/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.h"
#include "arm_compute/runtime/CL/functions/CLGEMMLowpOutputStage.h"
#include "arm_compute/runtime/CL/functions/CLPixelWiseMultiplication.h"
#include "arm_compute/runtime/CL/functions/CLQuantizationLayer.h"
#include "arm_compute/runtime/CL/functions/CLSlice.h"
#include "arm_compute/runtime/CL/functions/CLTranspose.h"
#include "arm_compute/runtime/common/LSTMParams.h"
namespace arm_compute
{
// Forward declarations
class ICLTensor;
/** Basic function to run @ref CLLSTMLayerQuantized
*
* This function calls the following CL functions/kernels:
*
* -# @ref CLGEMMLowpMatrixMultiplyCore Quantized matrix multiplication core. Accumulators are 32-bit integers
* -# @ref CLGEMMLowpOutputStage Convert 32-bit integers into QSYMM16
* -# @ref CLTranspose Matrix transpose
* -# @ref CLConcatenateLayer Tensor concatenation
* -# @ref CLActivationLayer Activation functions (tanh and logistic)
* -# @ref CLArithmeticAddition Elementwise addition
* -# @ref CLPixelWiseMultiplication Elementwise multiplication
* -# @ref CLSlice Tensor slicing
* -# @ref CLDequantizationLayer Dequantize into float
* -# @ref CLQuantizationLayer Quantize from float
* */
class CLLSTMLayerQuantized : public IFunction
{
public:
/** Default constructor */
CLLSTMLayerQuantized(std::shared_ptr<IMemoryManager> memory_manager = nullptr);
/** Prevent instances of this class from being copied (As this class contains pointers) */
CLLSTMLayerQuantized(const CLLSTMLayerQuantized &) = delete;
/** Default move constructor */
CLLSTMLayerQuantized(CLLSTMLayerQuantized &&) = default;
/** Prevent instances of this class from being copied (As this class contains pointers) */
CLLSTMLayerQuantized &operator=(const CLLSTMLayerQuantized &) = delete;
/** Default move assignment operator */
CLLSTMLayerQuantized &operator=(CLLSTMLayerQuantized &&) = default;
/** Initialize function's tensors.
*
* Valid data layouts:
* - All
*
* Valid data type configurations:
* |src0 - src8 |src9 - src12 |src13 |src14 |dst0 |dst1 |
* |:-----------|:------------|:-------|:------|:------|:------|
* |QASYMM8 |S32 |QSYMM16 |QASYMM8|QSYMM16|QASYMM8|
*
* @param[in] input Source tensor. Input is a 2D tensor with dimensions [input_size, batch_size]. Data types supported: QASYMM8.
* @param[in] input_to_input_weights 2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
* @param[in] input_to_forget_weights 2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
* @param[in] input_to_cell_weights 2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
* @param[in] input_to_output_weights 2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
* @param[in] recurrent_to_input_weights 2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
* @param[in] recurrent_to_forget_weights 2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
* @param[in] recurrent_to_cell_weights 2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
* @param[in] recurrent_to_output_weights 2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
* @param[in] input_gate_bias 1D weights tensor with dimensions [output_size]. Data type supported: S32.
* @param[in] forget_gate_bias 1D weights tensor with dimensions [output_size]. Data type supported: S32.
* @param[in] cell_bias 1D weights tensor with dimensions [output_size]. Data type supported: S32.
* @param[in] output_gate_bias 1D weights tensor with dimensions [output_size]. Data type supported: S32.
* @param[in] cell_state_in 2D tensor with dimensions [output_size, batch_size]. Data type supported: QSYMM16.
* @param[in] output_state_in 2D tensor with dimensions [output_size, batch_size]. Data type supported: Same as @p input.
* @param[out] cell_state_out Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size]. Data type supported: QSYMM16.
* @param[out] output_state_out Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size].Data types supported: Same as @p input.
*/
void configure(const ICLTensor *input,
const ICLTensor *input_to_input_weights,
const ICLTensor *input_to_forget_weights,
const ICLTensor *input_to_cell_weights,
const ICLTensor *input_to_output_weights,
const ICLTensor *recurrent_to_input_weights,
const ICLTensor *recurrent_to_forget_weights,
const ICLTensor *recurrent_to_cell_weights,
const ICLTensor *recurrent_to_output_weights,
const ICLTensor *input_gate_bias,
const ICLTensor *forget_gate_bias,
const ICLTensor *cell_bias,
const ICLTensor *output_gate_bias,
ICLTensor *cell_state_in,
const ICLTensor *output_state_in,
ICLTensor *cell_state_out,
ICLTensor *output_state_out);
/** Initialize function's tensors.
*
* @param[in] compile_context The compile context to be used.
* @param[in] input Source tensor. Input is a 2D tensor with dimensions [input_size, batch_size]. Data types supported: QASYMM8.
* @param[in] input_to_input_weights 2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
* @param[in] input_to_forget_weights 2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
* @param[in] input_to_cell_weights 2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
* @param[in] input_to_output_weights 2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
* @param[in] recurrent_to_input_weights 2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
* @param[in] recurrent_to_forget_weights 2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
* @param[in] recurrent_to_cell_weights 2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
* @param[in] recurrent_to_output_weights 2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
* @param[in] input_gate_bias 1D weights tensor with dimensions [output_size]. Data type supported: S32.
* @param[in] forget_gate_bias 1D weights tensor with dimensions [output_size]. Data type supported: S32.
* @param[in] cell_bias 1D weights tensor with dimensions [output_size]. Data type supported: S32.
* @param[in] output_gate_bias 1D weights tensor with dimensions [output_size]. Data type supported: S32.
* @param[in] cell_state_in 2D tensor with dimensions [output_size, batch_size]. Data type supported: QSYMM16.
* @param[in] output_state_in 2D tensor with dimensions [output_size, batch_size]. Data type supported: Same as @p input.
* @param[out] cell_state_out Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size]. Data type supported: QSYMM16.
* @param[out] output_state_out Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size].Data types supported: Same as @p input.
*/
void configure(const CLCompileContext &compile_context,
const ICLTensor *input,
const ICLTensor *input_to_input_weights,
const ICLTensor *input_to_forget_weights,
const ICLTensor *input_to_cell_weights,
const ICLTensor *input_to_output_weights,
const ICLTensor *recurrent_to_input_weights,
const ICLTensor *recurrent_to_forget_weights,
const ICLTensor *recurrent_to_cell_weights,
const ICLTensor *recurrent_to_output_weights,
const ICLTensor *input_gate_bias,
const ICLTensor *forget_gate_bias,
const ICLTensor *cell_bias,
const ICLTensor *output_gate_bias,
ICLTensor *cell_state_in,
const ICLTensor *output_state_in,
ICLTensor *cell_state_out,
ICLTensor *output_state_out);
/** Static function to check if given info will lead to a valid configuration of @ref CLLSTMLayerQuantized
*
* @param[in] input Source tensor info. Input is a 2D tensor info with dimensions [input_size, batch_size]. Data types supported: QASYMM8.
* @param[in] input_to_input_weights 2D weights tensor info with dimensions [input_size, output_size]. Data type supported: Same as @p input.
* @param[in] input_to_forget_weights 2D weights tensor info with dimensions [input_size, output_size]. Data type supported: Same as @p input.
* @param[in] input_to_cell_weights 2D weights tensor info with dimensions [input_size, output_size]. Data type supported: Same as @p input.
* @param[in] input_to_output_weights 2D weights tensor info with dimensions [input_size, output_size]. Data type supported: Same as @p input.
* @param[in] recurrent_to_input_weights 2D weights tensor info with dimensions [output_size, output_size]. Data type supported: Same as @p input.
* @param[in] recurrent_to_forget_weights 2D weights tensor info with dimensions [output_size, output_size]. Data type supported: Same as @p input.
* @param[in] recurrent_to_cell_weights 2D weights tensor info with dimensions [output_size, output_size]. Data type supported: Same as @p input.
* @param[in] recurrent_to_output_weights 2D weights tensor info with dimensions [output_size, output_size]. Data type supported: Same as @p input.
* @param[in] input_gate_bias 1D weights tensor info with dimensions [output_size]. Data type supported: S32.
* @param[in] forget_gate_bias 1D weights tensor info with dimensions [output_size]. Data type supported: S32.
* @param[in] cell_bias 1D weights tensor info with dimensions [output_size]. Data type supported: S32.
* @param[in] output_gate_bias 1D weights tensor info with dimensions [output_size]. Data type supported: S32.
* @param[in] cell_state_in 2D tensor info with dimensions [output_size, batch_size]. Data type supported: QSYMM16.
* @param[in] output_state_in 2D tensor info with dimensions [output_size, batch_size]. Data type supported: Same as @p input.
* @param[out] cell_state_out Destination tensor info. Output is a 2D tensor info with dimensions [output_size, batch_size]. Data type supported: QSYMM16.
* @param[out] output_state_out Destination tensor info. Output is a 2D tensor info with dimensions [output_size, batch_size].Data types supported: Same as @p input.
*
* @return a status
*/
static Status validate(const ITensorInfo *input,
const ITensorInfo *input_to_input_weights,
const ITensorInfo *input_to_forget_weights,
const ITensorInfo *input_to_cell_weights,
const ITensorInfo *input_to_output_weights,
const ITensorInfo *recurrent_to_input_weights,
const ITensorInfo *recurrent_to_forget_weights,
const ITensorInfo *recurrent_to_cell_weights,
const ITensorInfo *recurrent_to_output_weights,
const ITensorInfo *input_gate_bias,
const ITensorInfo *forget_gate_bias,
const ITensorInfo *cell_bias,
const ITensorInfo *output_gate_bias,
const ITensorInfo *cell_state_in,
const ITensorInfo *output_state_in,
const ITensorInfo *cell_state_out,
const ITensorInfo *output_state_out);
// Inherited methods overridden:
void run() override;
void prepare() override;
private:
MemoryGroup _memory_group;
// Functions used
CLGEMMLowpMatrixMultiplyCore _gemmlowp;
CLGEMMLowpOutputStage _output_stage;
CLTranspose _transpose_weights;
CLConcatenateLayer _concat_input_weights;
CLConcatenateLayer _concat_recurrent_weights;
CLConcatenateLayer _concat_weights;
CLConcatenateLayer _concat_inputs;
CLConcatenateLayer _concat_bias;
CLActivationLayer _sigmoid_forget_gate;
CLActivationLayer _sigmoid_input_gate;
CLActivationLayer _sigmoid_output_gate;
CLActivationLayer _tanh_modulation_gate;
CLActivationLayer _tanh_output_state;
CLArithmeticAddition _add_cell_state_tmps;
CLArithmeticAddition _add2;
CLPixelWiseMultiplication _mul_forget_gate_cell_state;
CLPixelWiseMultiplication _mul_input_gate_input_mod_gate;
CLPixelWiseMultiplication _mul_output_state_tmp_output_gate;
CLSlice _slice_input_tensor;
CLSlice _slice_forget_tensor;
CLSlice _slice_cell_tensor;
CLSlice _slice_output_tensor;
CLDequantizationLayer _dequantize;
CLQuantizationLayer _quantize;
// Tensor pointers
const ICLTensor *_input_to_input_weights;
const ICLTensor *_input_to_forget_weights;
const ICLTensor *_input_to_cell_weights;
const ICLTensor *_input_to_output_weights;
const ICLTensor *_recurrent_to_input_weights;
const ICLTensor *_recurrent_to_forget_weights;
const ICLTensor *_recurrent_to_cell_weights;
const ICLTensor *_recurrent_to_output_weights;
const ICLTensor *_input_gate_bias;
const ICLTensor *_forget_gate_bias;
const ICLTensor *_cell_bias;
const ICLTensor *_output_gate_bias;
// Temporary tensors
CLTensor _recurrent_weights;
CLTensor _input_weights;
CLTensor _weights;
CLTensor _input;
CLTensor _weights_transposed;
CLTensor _output_highp;
CLTensor _output_lowp;
CLTensor _bias;
CLTensor _forget_gate_input;
CLTensor _input_gate_input;
CLTensor _output_gate_input;
CLTensor _input_modulation_gate_input;
CLTensor _forget_gate_output;
CLTensor _input_gate_output;
CLTensor _output_gate_output;
CLTensor _input_modulation_gate_output;
CLTensor _cell_state_tmp1;
CLTensor _cell_state_tmp2;
CLTensor _output_state_tmp;
CLTensor _output_state_out_symm;
CLTensor _output_state_out_f32;
bool _is_prepared;
};
} // namespace arm_compute
#endif /* ARM_COMPUTE_CLLSTMLAYERQUANTIZED_H */
|