1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
|
/*
* Copyright (c) 2020-2021, 2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ACL_ARM_COMPUTE_RUNTIME_CL_FUNCTIONS_CLQLSTMLAYER_H
#define ACL_ARM_COMPUTE_RUNTIME_CL_FUNCTIONS_CLQLSTMLAYER_H
#include "arm_compute/core/Types.h"
#include "arm_compute/runtime/CL/functions/CLActivationLayer.h"
#include "arm_compute/runtime/CL/functions/CLCopy.h"
#include "arm_compute/runtime/CL/functions/CLElementwiseOperations.h"
#include "arm_compute/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.h"
#include "arm_compute/runtime/CL/functions/CLGEMMLowpOutputStage.h"
#include "arm_compute/runtime/CL/functions/CLPixelWiseMultiplication.h"
#include "arm_compute/runtime/CL/functions/CLTranspose.h"
#include "arm_compute/runtime/common/LSTMParams.h"
namespace arm_compute
{
// Forward declarations
class CLCompileContext;
class ICLTensor;
class CLQLSTMLayerNormalizationKernel;
class ITensorInfo;
namespace opencl
{
namespace kernels
{
class ClGemmLowpMatrixAReductionKernel;
} // namespace kernels
} // namespace opencl
/** Basic function to run @ref CLQLSTMLayer
*
* This function calls the following CL functions/kernels:
*
* -# @ref CLActivationLayer Activation functions (tanh and logistic)
* -# @ref CLCopy Copy function for copying output_state_out to output
* -# @ref CLArithmeticAddition Elementwise addition and subtraction
* -# @ref CLGEMMLowpMatrixMultiplyCore Quantized matrix multiplication core. Accumulators are 32-bit integers
* -# @ref CLGEMMLowpOutputStage Convert 32-bit integers into QSYMM16
* -# opencl::kernels::ClGemmLowpMatrixAReductionKernel For precomputing effective biases to use
* -# @ref CLPixelWiseMultiplication Elementwise multiplication
* -# @ref CLTranspose Transpose function for reshaping the weights
* */
class CLQLSTMLayer : public IFunction
{
public:
/** Default constructor */
CLQLSTMLayer(std::shared_ptr<IMemoryManager> memory_manager = nullptr);
/** Prevent instances of this class from being copied (As this class contains pointers) */
CLQLSTMLayer(const CLQLSTMLayer &) = delete;
/** Default move constructor */
CLQLSTMLayer(CLQLSTMLayer &&) = default;
/** Prevent instances of this class from being copied (As this class contains pointers) */
CLQLSTMLayer &operator=(const CLQLSTMLayer &) = delete;
/** Default move assignment operator */
CLQLSTMLayer &operator=(CLQLSTMLayer &&) = default;
/** Default destructor */
~CLQLSTMLayer();
/** Initialize function's tensors.
*
* Valid data layouts:
* - All
*
* Valid data type configurations:
* |src0 |src1 - src6 |src7 -src9 |src10 |src11 |dst0 |dst1 - dst2 |
* |:-------------|:------------|:------------|:------|:-------------|:------|:-----------------|
* |QASYMM8_SIGNED|QASYMM8 |S32 |QSYMM16|QASYMM8_SIGNED|QSYMM16|QASYMM8_SIGNED |
*
* @param[in] input Source tensor. Input is a 2D tensor with dimensions [input_size, batch_size]. Data types supported: QASYMM8_SIGNED.
* @param[in] input_to_forget_weights 2D weights tensor with dimensions [input_size, num_units]. Data type supported: QSYMM8.
* @param[in] input_to_cell_weights 2D weights tensor with dimensions [input_size, num_units]. Data type supported: QSYMM8.
* @param[in] input_to_output_weights 2D weights tensor with dimensions [input_size, num_units]. Data type supported: QSYMM8.
* @param[in] recurrent_to_forget_weights 2D weights tensor with dimensions [output_size, num_units]. Data type supported: QSYMM8.
* @param[in] recurrent_to_cell_weights 2D weights tensor with dimensions [output_size, num_units]. Data type supported: QSYMM8.
* @param[in] recurrent_to_output_weights 2D weights tensor with dimensions [output_size, num_units]. Data type supported: QSYMM8.
* @param[in] forget_gate_bias 1D weights tensor with dimensions [num_units]. Data type supported: S32.
* @param[in] cell_bias 1D weights tensor with dimensions [num_units]. Data type supported: S32.
* @param[in] output_gate_bias 1D weights tensor with dimensions [num_units]. Data type supported: S32.
* @param[in] cell_state_in 2D tensor with dimensions [num_units, batch_size]. Data type supported: QSYMM16.
* @param[in] output_state_in 2D tensor with dimensions [output_size, batch_size]. Data type supported: Same as @p input.
* @param[out] cell_state_out Destination tensor. Output is a 2D tensor with dimensions [num_units, batch_size]. Data type supported: QSYMM16.
* @param[out] output_state_out Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size].Data types supported: Same as @p input.
* @param[out] output Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size].Data types supported: Same as @p input.
* @param[in] lstm_params Weights tensors used in peephole, CIFG and layer normalization optimizations:
* input_intermediate_scale Scale of the intermediate result of matmul, i.e. input to layer normalization, at input gate.
* forget_intermediate_scale Scale of the intermediate result of matmul, i.e. input to layer normalization, at forget gate.
* cell_intermediate_scale Scale of the intermediate result of matmul, i.e. input to layer normalization, at cell gate.
* output_intermediate_scale Scale of the intermediate result of matmul, i.e. input to layer normalization, at output gate.
* hidden_state_zero The zero point of the hidden state.
* hidden_state_scale The scale of the hidden state.
* input_to_input_weights (Optional) 2D weights tensor with dimensions [input_size, num_units]. Data type supported: QSYMM8.
* recurrent_to_input_weights (Optional) 2D weights tensor with dimensions [output_size, num_units]. Data type supported: QSYMM8.
* cell_to_input_weights (Optional) 1D weights tensor with dimensions [num_units]. Can be nullptr. Data type supported: QSYMM16.
* cell_to_forget_weights (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
* cell_to_output_weights (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
* input_gate_bias (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: S32.
* projection_weights (Optional) 2D weights tensor with dimensions [output_size, num_units]. Data type supported: QSYMM8.
* projection_bias (Optional) 1D weights tensor with dimensions [output_size]. S32.
* input_layer_norm_weights (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
* forget_layer_norm_weights (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
* cell_layer_norm_weights (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
* output_layer_norm_weights (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
* cell_threshold (Optional) The clipping threshold for the cell state, such that values are bound within [-cell_clip, cell_clip].
* If set to 0.0 then clipping is disabled.
* projection_threshold (Optional) The clipping threshold for the output from the projection layer, such that values are bound within
* [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
*/
void configure(const ICLTensor *input,
const ICLTensor *input_to_forget_weights,
const ICLTensor *input_to_cell_weights,
const ICLTensor *input_to_output_weights,
const ICLTensor *recurrent_to_forget_weights,
const ICLTensor *recurrent_to_cell_weights,
const ICLTensor *recurrent_to_output_weights,
const ICLTensor *forget_gate_bias,
const ICLTensor *cell_bias,
const ICLTensor *output_gate_bias,
ICLTensor *cell_state_in,
ICLTensor *output_state_in,
ICLTensor *cell_state_out,
ICLTensor *output_state_out,
ICLTensor *output,
const LSTMParams<ICLTensor> &lstm_params);
/** Initialize function's tensors.
*
* @param[in] compile_context The compile context to be used.
* @param[in] input Source tensor. Input is a 2D tensor with dimensions [input_size, batch_size]. Data types supported: QASYMM8_SIGNED.
* @param[in] input_to_forget_weights 2D weights tensor with dimensions [input_size, num_units]. Data type supported: QSYMM8.
* @param[in] input_to_cell_weights 2D weights tensor with dimensions [input_size, num_units]. Data type supported: QSYMM8.
* @param[in] input_to_output_weights 2D weights tensor with dimensions [input_size, num_units]. Data type supported: QSYMM8.
* @param[in] recurrent_to_forget_weights 2D weights tensor with dimensions [output_size, num_units]. Data type supported: QSYMM8.
* @param[in] recurrent_to_cell_weights 2D weights tensor with dimensions [output_size, num_units]. Data type supported: QSYMM8.
* @param[in] recurrent_to_output_weights 2D weights tensor with dimensions [output_size, num_units]. Data type supported: QSYMM8.
* @param[in] forget_gate_bias 1D weights tensor with dimensions [num_units]. Data type supported: S32.
* @param[in] cell_bias 1D weights tensor with dimensions [num_units]. Data type supported: S32.
* @param[in] output_gate_bias 1D weights tensor with dimensions [num_units]. Data type supported: S32.
* @param[in] cell_state_in 2D tensor with dimensions [num_units, batch_size]. Data type supported: QSYMM16.
* @param[in] output_state_in 2D tensor with dimensions [output_size, batch_size]. Data type supported: Same as @p input.
* @param[out] cell_state_out Destination tensor. Output is a 2D tensor with dimensions [num_units, batch_size]. Data type supported: QSYMM16.
* @param[out] output_state_out Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size].Data types supported: Same as @p input.
* @param[out] output Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size].Data types supported: Same as @p input.
* @param[in] lstm_params Weights tensors used in peephole, CIFG and layer normalization optimizations:
* input_intermediate_scale Scale of the intermediate result of matmul, i.e. input to layer normalization, at input gate.
* forget_intermediate_scale Scale of the intermediate result of matmul, i.e. input to layer normalization, at forget gate.
* cell_intermediate_scale Scale of the intermediate result of matmul, i.e. input to layer normalization, at cell gate.
* output_intermediate_scale Scale of the intermediate result of matmul, i.e. input to layer normalization, at output gate.
* hidden_state_zero The zero point of the hidden state.
* hidden_state_scale The scale of the hidden state.
* input_to_input_weights (Optional) 2D weights tensor with dimensions [input_size, num_units]. Data type supported: QSYMM8.
* recurrent_to_input_weights (Optional) 2D weights tensor with dimensions [output_size, num_units]. Data type supported: QSYMM8.
* cell_to_input_weights (Optional) 1D weights tensor with dimensions [num_units]. Can be nullptr. Data type supported: QSYMM16.
* cell_to_forget_weights (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
* cell_to_output_weights (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
* input_gate_bias (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: S32.
* projection_weights (Optional) 2D weights tensor with dimensions [output_size, num_units]. Data type supported: QSYMM8.
* projection_bias (Optional) 1D weights tensor with dimensions [output_size]. S32.
* input_layer_norm_weights (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
* forget_layer_norm_weights (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
* cell_layer_norm_weights (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
* output_layer_norm_weights (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
* cell_threshold (Optional) The clipping threshold for the cell state, such that values are bound within [-cell_clip, cell_clip].
* If set to 0.0 then clipping is disabled.
* projection_threshold (Optional) The clipping threshold for the output from the projection layer, such that values are bound within
* [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
*/
void configure(const CLCompileContext &compile_context,
const ICLTensor *input,
const ICLTensor *input_to_forget_weights,
const ICLTensor *input_to_cell_weights,
const ICLTensor *input_to_output_weights,
const ICLTensor *recurrent_to_forget_weights,
const ICLTensor *recurrent_to_cell_weights,
const ICLTensor *recurrent_to_output_weights,
const ICLTensor *forget_gate_bias,
const ICLTensor *cell_bias,
const ICLTensor *output_gate_bias,
ICLTensor *cell_state_in,
ICLTensor *output_state_in,
ICLTensor *cell_state_out,
ICLTensor *output_state_out,
ICLTensor *output,
const LSTMParams<ICLTensor> &lstm_params);
/** Static function to check if given info will lead to a valid configuration of @ref CLQLSTMLayer
*
* @param[in] input Source tensor info. Input is a 2D tensor info with dimensions [input_size, batch_size]. Data types supported: QASYMM8_SIGNED.
* @param[in] input_to_forget_weights 2D weights tensor info with dimensions [input_size, num_units]. Data type supported: QSYMM8.
* @param[in] input_to_cell_weights 2D weights tensor info with dimensions [input_size, num_units]. Data type supported: QSYMM8.
* @param[in] input_to_output_weights 2D weights tensor info with dimensions [input_size, num_units]. Data type supported: QSYMM8.
* @param[in] recurrent_to_forget_weights 2D weights tensor info with dimensions [output_size, num_units]. Data type supported: QSYMM8.
* @param[in] recurrent_to_cell_weights 2D weights tensor info with dimensions [output_size, num_units]. Data type supported: QSYMM8.
* @param[in] recurrent_to_output_weights 2D weights tensor info with dimensions [output_size, num_units]. Data type supported: QSYMM8.
* @param[in] forget_gate_bias 1D weights tensor info with dimensions [num_units]. Data type supported: S32.
* @param[in] cell_bias 1D weights tensor info with dimensions [num_units]. Data type supported: S32.
* @param[in] output_gate_bias 1D weights tensor info with dimensions [num_units]. Data type supported: S32.
* @param[in] cell_state_in 2D tensor info with dimensions [num_units, batch_size]. Data type supported: QSYMM16.
* @param[in] output_state_in 2D tensor info with dimensions [output_size, batch_size]. Data type supported: Same as @p input.
* @param[in] cell_state_out Destination tensor info. Output is a 2D tensor info with dimensions [num_units, batch_size]. Data type supported: QSYMM16.
* @param[in] output_state_out Destination tensor info. Output is a 2D tensor info with dimensions [output_size, batch_size].Data types supported: Same as @p input.
* @param[in] output Destination tensor info. Output is a 2D tensor info with dimensions [output_size, batch_size].Data types supported: Same as @p input.
* @param[in] lstm_params Weights tensors info used in peephole, CIFG and layer normalization optimizations:
* input_intermediate_scale Scale of the intermediate result of matmul, i.e. input to layer normalization, at input gate.
* forget_intermediate_scale Scale of the intermediate result of matmul, i.e. input to layer normalization, at forget gate.
* cell_intermediate_scale Scale of the intermediate result of matmul, i.e. input to layer normalization, at cell gate.
* output_intermediate_scale Scale of the intermediate result of matmul, i.e. input to layer normalization, at output gate.
* hidden_state_zero The zero point of the hidden state.
* hidden_state_scale The scale of the hidden state.
* input_to_input_weights (Optional) 2D weights tensor with dimensions [input_size, num_units]. Data type supported: QSYMM8.
* recurrent_to_input_weights (Optional) 2D weights tensor with dimensions [output_size, num_units]. Data type supported: QSYMM8.
* cell_to_input_weights (Optional) 1D weights tensor with dimensions [num_units]. Can be nullptr. Data type supported: QSYMM16.
* cell_to_forget_weights (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
* cell_to_output_weights (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
* input_gate_bias (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: S32.
* projection_weights (Optional) 2D weights tensor with dimensions [output_size, num_units]. Data type supported: QSYMM8.
* projection_bias (Optional) 1D weights tensor with dimensions [output_size]. S32.
* input_layer_norm_weights (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
* forget_layer_norm_weights (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
* cell_layer_norm_weights (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
* output_layer_norm_weights (Optional) 1D weights tensor with dimensions [num_units]. Data type supported: QSYMM16.
* cell_threshold (Optional) The clipping threshold for the cell state, such that values are bound within [-cell_clip, cell_clip].
* If set to 0.0 then clipping is disabled.
* projection_threshold (Optional) The clipping threshold for the output from the projection layer, such that values are bound within
* [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
* @return a status
*/
static Status validate(const ITensorInfo *input,
const ITensorInfo *input_to_forget_weights,
const ITensorInfo *input_to_cell_weights,
const ITensorInfo *input_to_output_weights,
const ITensorInfo *recurrent_to_forget_weights,
const ITensorInfo *recurrent_to_cell_weights,
const ITensorInfo *recurrent_to_output_weights,
const ITensorInfo *forget_gate_bias,
const ITensorInfo *cell_bias,
const ITensorInfo *output_gate_bias,
const ITensorInfo *cell_state_in,
const ITensorInfo *output_state_in,
const ITensorInfo *cell_state_out,
const ITensorInfo *output_state_out,
const ITensorInfo *output,
const LSTMParams<ITensorInfo> &lstm_params);
// Inherited methods overridden:
void run() override;
void prepare() override;
private:
enum class LayerNormGate : uint8_t
{
Forget,
Cell,
Input,
Output,
Count
};
static constexpr uint8_t _layer_norm_count = static_cast<uint8_t>(LayerNormGate::Count);
static constexpr uint32_t _out_state_output_size_dimension_idx = 0;
/** Internal method to configure matrix multiplication plus output stage of each gate.
*
* @param[in] compile_context The compile context to be used.
* @param[in] mm Matrix multiplication function to use.
* @param[in] outstage Output stage function to use.
* @param[in] gemmlowp_info GEMMLowp metadata to be used by the output stage.
* @param[in] mm_input Input tensor to matrix multiplication function.
* @param[in] mm_weights Weights tensor to matrix multiplication function.
* @param[in] bias Bias tensor to matrix multiplication function.
* @param[in] outstage_res Tensor to be used for storing the result of the output stage.
* @param[in] gemmlowp_scale Real multiplier to be used computing multiplier and shift for requantization.
* @param[in] mm_res_info Tensor info to be used to initialize matrix multiplication result tensor.
* @param[in] mm_res_info Tensor info to be used to initialize output stage result tensor.
*
*/
void configure_mm(const CLCompileContext &compile_context,
CLGEMMLowpMatrixMultiplyCore &mm,
CLGEMMLowpOutputStage &outstage,
GEMMLowpOutputStageInfo &gemmlowp_info,
const ICLTensor *mm_input,
const ICLTensor *mm_weights,
const ICLTensor *bias,
CLTensor *mm_res,
CLTensor *outstage_res,
float gemmlowp_scale,
const TensorInfo &mm_res_info,
const TensorInfo &outstage_tensor_info);
MemoryGroup _memory_group{};
/** A small internel kernel do the copy between two tensors */
class TensorCopyKernel
{
static constexpr uint32_t max_dimension_supported = 2;
ICLTensor *_src{nullptr};
ICLTensor *_dst{nullptr};
size_t _row_size{};
Window _window{};
public:
/** Static function to check if given info will lead to a valid configuration of @ref CLQLSTMLayer::TensorCopyKernel
*
* @param[in] src Source tensor info.
* @param[in] dst Destination tensor info
*
* @return a status
*/
static Status validate(const ITensorInfo &src, const ITensorInfo &dst);
/** Set the input and output tensors.
*
* @param[in] src Source tensor
* @param[out] dst Destination tensor
*/
void configure(ICLTensor &src, ICLTensor &dst);
/** run the kernel */
void run();
};
// Functions used
CLTranspose _transpose_input_to_forget_weights{};
CLTranspose _transpose_input_to_cell_weights{};
CLTranspose _transpose_input_to_output_weights{};
CLTranspose _transpose_input_to_input_weights{};
CLTranspose _transpose_recurrent_to_forget_weights{};
CLTranspose _transpose_recurrent_to_cell_weights{};
CLTranspose _transpose_recurrent_to_output_weights{};
CLTranspose _transpose_recurrent_to_input_weights{};
CLTranspose _transpose_projection_weights{};
std::unique_ptr<opencl::kernels::ClGemmLowpMatrixAReductionKernel> _input_to_input_reduction;
std::unique_ptr<opencl::kernels::ClGemmLowpMatrixAReductionKernel> _recurrent_to_input_reduction;
std::unique_ptr<opencl::kernels::ClGemmLowpMatrixAReductionKernel> _input_to_forget_reduction;
std::unique_ptr<opencl::kernels::ClGemmLowpMatrixAReductionKernel> _recurrent_to_forget_reduction;
std::unique_ptr<opencl::kernels::ClGemmLowpMatrixAReductionKernel> _input_to_cell_reduction;
std::unique_ptr<opencl::kernels::ClGemmLowpMatrixAReductionKernel> _recurrent_to_cell_reduction;
std::unique_ptr<opencl::kernels::ClGemmLowpMatrixAReductionKernel> _input_to_output_reduction;
std::unique_ptr<opencl::kernels::ClGemmLowpMatrixAReductionKernel> _recurrent_to_output_reduction;
std::unique_ptr<opencl::kernels::ClGemmLowpMatrixAReductionKernel> _projection_reduction;
CLArithmeticAddition _projection_bias_add{};
CLGEMMLowpMatrixMultiplyCore _mm_input_to_forget{};
CLGEMMLowpMatrixMultiplyCore _mm_recurrent_to_forget{};
CLPixelWiseMultiplication _pixelwise_mul_cell_to_forget{};
CLGEMMLowpOutputStage _input_to_forget_outstage{};
CLGEMMLowpOutputStage _recurrent_to_forget_outstage{};
CLGEMMLowpOutputStage _cell_to_forget_outstage{};
CLArithmeticAddition _accumulate_input_recurrent_forget{};
CLArithmeticAddition _accumulate_cell_forget{};
CLActivationLayer _forget_gate_sigmoid{};
CLGEMMLowpMatrixMultiplyCore _mm_input_to_cell{};
CLGEMMLowpOutputStage _input_to_cell_outstage{};
CLGEMMLowpMatrixMultiplyCore _mm_recurrent_to_cell{};
CLGEMMLowpOutputStage _recurrent_to_cell_outstage{};
CLArithmeticAddition _accumulate_input_recurrent_modulation{};
CLActivationLayer _cell_gate_tanh{};
CLArithmeticSubtraction _input_gate_sub{};
CLGEMMLowpMatrixMultiplyCore _mm_input_to_input{};
CLGEMMLowpOutputStage _input_to_input_outstage{};
CLGEMMLowpMatrixMultiplyCore _mm_recurrent_to_input{};
CLGEMMLowpOutputStage _recurrent_to_input_outstage{};
CLArithmeticAddition _accumulate_input_recurrent_input{};
CLPixelWiseMultiplication _pixelwise_mul_cell_to_input{};
CLGEMMLowpOutputStage _cell_to_input_outstage{};
CLArithmeticAddition _accumulate_cell_input{};
CLActivationLayer _input_gate_sigmoid{};
CLPixelWiseMultiplication _pixelwise_mul_forget_cell{};
CLPixelWiseMultiplication _pixelwise_mul_input_cell{};
CLArithmeticAddition _add_forget_cell{};
CLActivationLayer _cell_clip{};
CLGEMMLowpMatrixMultiplyCore _mm_input_to_output{};
CLGEMMLowpOutputStage _input_to_output_outstage{};
CLGEMMLowpMatrixMultiplyCore _mm_recurrent_to_output{};
CLGEMMLowpOutputStage _recurrent_to_output_outstage{};
CLArithmeticAddition _accumulate_input_recurrent_output{};
CLPixelWiseMultiplication _pixelwise_mul_cell_to_output{};
CLGEMMLowpOutputStage _cell_to_output_outstage{};
CLArithmeticAddition _accumulate_cell_to_output{};
CLActivationLayer _output_gate_sigmoid{};
CLActivationLayer _hidden_tanh{};
CLPixelWiseMultiplication _pixelwise_mul_hidden{};
CLGEMMLowpOutputStage _hidden_outstage{};
CLGEMMLowpMatrixMultiplyCore _mm_projection{};
CLGEMMLowpOutputStage _projection_outstage{};
CLArithmeticAddition _accumulate_projection{};
CLActivationLayer _projection_clip{};
std::array<std::unique_ptr<CLQLSTMLayerNormalizationKernel>, _layer_norm_count> _layer_norms;
CLCopy _copy_output;
TensorCopyKernel _projection_bias_copy{};
TensorCopyKernel _projection_output_to_accumulate_copy{};
TensorCopyKernel _projection_accumulate_to_output_copy{};
TensorCopyKernel _hidden_to_output_copy{};
// Tensor pointers
const ICLTensor *_input_to_input_weights{nullptr};
const ICLTensor *_recurrent_to_input_weights{nullptr};
const ICLTensor *_projection_bias{nullptr};
const ICLTensor *_input_to_forget_weights{nullptr};
const ICLTensor *_input_to_cell_weights{nullptr};
const ICLTensor *_input_to_output_weights{nullptr};
const ICLTensor *_recurrent_to_forget_weights{nullptr};
const ICLTensor *_recurrent_to_cell_weights{nullptr};
const ICLTensor *_recurrent_to_output_weights{nullptr};
const ICLTensor *_projection_weights{nullptr};
std::array<const ICLTensor *, _layer_norm_count> _layer_norm_weights{{}};
std::array<const ICLTensor *, _layer_norm_count> _layer_norm_bias{{}};
using LayerNormIndexType = typename std::underlying_type<LayerNormGate>::type;
inline LayerNormIndexType getGateIndex(LayerNormGate g)
{
return static_cast<LayerNormIndexType>(g);
}
inline void set_layer_norm_weight(const ICLTensor *t, LayerNormGate g)
{
_layer_norm_weights[getGateIndex(g)] = t;
}
inline void set_layer_norm_bias(const ICLTensor *t, LayerNormGate g)
{
_layer_norm_bias[getGateIndex(g)] = t;
}
inline const ICLTensor *get_layer_norm_weight(LayerNormGate g)
{
return _layer_norm_weights[getGateIndex(g)];
}
inline const ICLTensor *get_layer_norm_bias(LayerNormGate g)
{
return _layer_norm_bias[getGateIndex(g)];
}
inline CLQLSTMLayerNormalizationKernel &get_layer_norm(LayerNormGate g)
{
return *_layer_norms[getGateIndex(g)];
}
inline void configure_layer_norm(LayerNormGate g, const ICLTensor *in);
inline static Status validate_layer_norm(const ITensorInfo &in, const ITensorInfo &weight, const ITensorInfo &bias);
// Temporary tensors
CLTensor _input_to_forget_weights_transposed{nullptr};
CLTensor _input_to_cell_weights_transposed{nullptr};
CLTensor _input_to_output_weights_transposed{nullptr};
CLTensor _input_to_input_weights_transposed{nullptr};
CLTensor _recurrent_to_forget_weights_transposed{nullptr};
CLTensor _recurrent_to_cell_weights_transposed{nullptr};
CLTensor _recurrent_to_output_weights_transposed{nullptr};
CLTensor _recurrent_to_input_weights_transposed{nullptr};
CLTensor _projection_weights_transposed{nullptr};
CLTensor _input_to_input_eff_bias{nullptr};
CLTensor _recurrent_to_input_eff_bias{nullptr};
CLTensor _input_to_forget_eff_bias{nullptr};
CLTensor _recurrent_to_forget_eff_bias{nullptr};
CLTensor _input_to_cell_eff_bias{nullptr};
CLTensor _recurrent_to_cell_eff_bias{nullptr};
CLTensor _input_to_output_eff_bias{nullptr};
CLTensor _recurrent_to_output_eff_bias{nullptr};
CLTensor _projection_reduction_res{nullptr};
CLTensor _projection_eff_bias{nullptr};
CLTensor _mm_input_to_forget_res{nullptr};
CLTensor _mm_recurrent_to_forget_res{nullptr};
CLTensor _mul_cell_to_forget_res{nullptr};
CLTensor _input_to_forget_outstage_res{nullptr};
CLTensor _cell_to_forget_outstage_res{nullptr};
CLTensor _recurrent_to_forget_outstage_res{nullptr};
CLTensor _forget_gate{nullptr};
CLTensor _mm_input_to_cell_res{nullptr};
CLTensor _input_to_cell_outstage_res{nullptr};
CLTensor _mm_recurrent_to_cell_res{nullptr};
CLTensor _recurrent_to_cell_outstage_res{nullptr};
CLTensor _cell_gate{nullptr};
CLTensor _mul_input_cell_res{nullptr};
CLTensor _mm_input_to_input_res{nullptr};
CLTensor _input_to_input_outstage_res{nullptr};
CLTensor _mm_recurrent_to_input_res{nullptr};
CLTensor _mul_cell_to_input_res{nullptr};
CLTensor _cell_to_input_outstage_res{nullptr};
CLTensor _recurrent_to_input_outstage_res{nullptr};
CLTensor _input_gate{nullptr};
CLTensor _mm_input_to_output_res{nullptr};
CLTensor _input_to_output_outstage_res{nullptr};
CLTensor _mm_recurrent_to_output_res{nullptr};
CLTensor _mul_cell_to_output_res{nullptr};
CLTensor _cell_to_output_outstage_res{nullptr};
CLTensor _recurrent_to_output_outstage_res{nullptr};
CLTensor _output_gate{nullptr};
CLTensor _hidden_mul_res{nullptr};
CLTensor _hidden_gate{nullptr};
CLTensor _mm_projection_res{nullptr};
CLTensor _projection_outstage_res{nullptr};
CLTensor _projection_out_res{nullptr};
CLTensor _projection_accumulate_res{nullptr};
CLTensor _ones{nullptr};
std::array<CLTensor, _layer_norm_count> _layer_norm_output{{}};
inline CLTensor &get_layer_norm_output(LayerNormGate g)
{
return _layer_norm_output[getGateIndex(g)];
}
bool _is_prepared{false};
bool _has_cifg{false};
bool _has_cell_clipping{false};
bool _has_projection{false};
bool _has_projection_clipping{false};
bool _has_peephole{false};
bool _has_layer_norm{false};
bool _projection_tensor_copy_required{false};
};
} // namespace arm_compute
#endif // ACL_ARM_COMPUTE_RUNTIME_CL_FUNCTIONS_CLQLSTMLAYER_H
|