1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
/*
* Copyright (c) 2018-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_CLRNN_LAYER_H
#define ARM_COMPUTE_CLRNN_LAYER_H
#include "arm_compute/runtime/CL/functions/CLActivationLayer.h"
#include "arm_compute/runtime/CL/functions/CLCopy.h"
#include "arm_compute/runtime/CL/functions/CLElementwiseOperations.h"
#include "arm_compute/runtime/CL/functions/CLFullyConnectedLayer.h"
#include "arm_compute/runtime/CL/functions/CLGEMM.h"
#include "arm_compute/runtime/CL/ICLSimpleFunction.h"
#include <memory>
namespace arm_compute
{
class ICLTensor;
/** Basic function to run @ref CLRNNLayer */
class CLRNNLayer : public IFunction
{
public:
/** Default constructor */
CLRNNLayer(std::shared_ptr<IMemoryManager> memory_manager = nullptr);
/** Prevent instances of this class from being copied */
CLRNNLayer(const CLRNNLayer &) = delete;
/** Prevent instances of this class from being copied */
CLRNNLayer &operator=(const CLRNNLayer &) = delete;
/** Default destructor */
~CLRNNLayer();
/** Initialize the function
*
* Valid data layouts:
* - NHWC
* - NCHW
*
* Valid data type configurations:
* |src0 |src1 |src2 |src3 |dst0 |dst1 |
* |:------|:------|:------|:------|:------|:------|
* |F16 |F16 |F16 |F16 |F16 |F16 |
* |F32 |F32 |F32 |F32 |F32 |F32 |
*
* @param[in] input Input is a 2-D tensor of shape [input_size, batch_size]. Data types supported: F16/F32
* @param[in] weights Weights tensor of shape [input_size, num_units] that multiplies the input. Data types supported: Same as @p input
* @param[in] recurrent_weights Weights tensor of shape [num_units, num_units] that multiplies the current 'state'. Data types supported: Same as @p input
* @param[in] bias Bias vector of shape [num_units]. Data types supported: Same as @p input
* @param[out] output Output tensor of shape [num_units, batch_size]. Data types supported: Same as @p input
* @param[in,out] hidden_state Output tensor of shape [num_units, batch_size]. Data types supported: Same as @p input
* @param[in] info Activation layer parameter.
*/
void configure(const ICLTensor *input,
const ICLTensor *weights,
const ICLTensor *recurrent_weights,
const ICLTensor *bias,
ICLTensor *hidden_state,
ICLTensor *output,
ActivationLayerInfo &info);
/** Initialize the function
*
* @param[in] compile_context The compile context to be used.
* @param[in] input Input is a 2-D tensor of shape [input_size, batch_size]. Data types supported: F16/F32
* @param[in] weights Weights tensor of shape [input_size, num_units] that multiplies the input. Data types supported: Same as @p input
* @param[in] recurrent_weights Weights tensor of shape [num_units, num_units] that multiplies the current 'state'. Data types supported: Same as @p input
* @param[in] bias Bias vector of shape [num_units]. Data types supported: Same as @p input
* @param[out] output Output tensor of shape [num_units, batch_size]. Data types supported: Same as @p input
* @param[in,out] hidden_state Output tensor of shape [num_units, batch_size]. Data types supported: Same as @p input
* @param[in] info Activation layer parameter.
*/
void configure(const CLCompileContext &compile_context,
const ICLTensor *input,
const ICLTensor *weights,
const ICLTensor *recurrent_weights,
const ICLTensor *bias,
ICLTensor *hidden_state,
ICLTensor *output,
ActivationLayerInfo &info);
/** Initialize the function
*
* @param[in] input Input is a 2-D tensor of shape [input_size, batch_size]. Data types supported: F16/F32
* @param[in] weights Weights tensor of shape [input_size, num_units] that multiplies the input. Data types supported: Same as @p input
* @param[in] recurrent_weights Weights tensor of shape [num_units, num_units] that multiplies the current 'state'. Data types supported: Same as @p input
* @param[in] bias Bias vector of shape [num_units]. Data types supported: Same as @p input
* @param[in] output Output tensor of shape [num_units, batch_size]. Data types supported: Same as @p input
* @param[in] hidden_state Output tensor of shape [num_units, batch_size]. Data types supported: Same as @p input
* @param[in] info Activation layer parameter.
*
* @return a status
*/
static Status validate(const ITensorInfo *input,
const ITensorInfo *weights,
const ITensorInfo *recurrent_weights,
const ITensorInfo *bias,
const ITensorInfo *hidden_state,
const ITensorInfo *output,
const ActivationLayerInfo &info);
// Inherited methods overridden:
void run() override;
void prepare() override;
private:
MemoryGroup _memory_group;
CLGEMM _gemm_state_f;
CLArithmeticAddition _add_kernel;
CLActivationLayer _activation;
CLFullyConnectedLayer _fully_connected_kernel;
CLCopy _copy;
CLTensor _fully_connected_out;
CLTensor _gemm_output;
CLTensor _add_output;
bool _is_prepared;
};
} // namespace arm_compute
#endif /* ARM_COMPUTE_CLRNN_LAYER_H */
|