1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
/*
* Copyright (c) 2018-2020, 2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ACL_ARM_COMPUTE_RUNTIME_CPP_FUNCTIONS_CPPBOXWITHNONMAXIMASUPPRESSIONLIMIT_H
#define ACL_ARM_COMPUTE_RUNTIME_CPP_FUNCTIONS_CPPBOXWITHNONMAXIMASUPPRESSIONLIMIT_H
#include "arm_compute/core/CPP/kernels/CPPBoxWithNonMaximaSuppressionLimitKernel.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/runtime/IFunction.h"
#include "arm_compute/runtime/IMemoryManager.h"
#include "arm_compute/runtime/MemoryGroup.h"
#include "arm_compute/runtime/MemoryManagerOnDemand.h"
#include "arm_compute/runtime/Tensor.h"
namespace arm_compute
{
class ITensor;
/** Basic function to run CPPBoxWithNonMaximaSuppressionLimitKernel */
class CPPBoxWithNonMaximaSuppressionLimit : public IFunction
{
public:
/** Constructor */
CPPBoxWithNonMaximaSuppressionLimit(std::shared_ptr<IMemoryManager> memory_manager);
CPPBoxWithNonMaximaSuppressionLimit() : CPPBoxWithNonMaximaSuppressionLimit(MemoryManagerOnDemand::make_default())
{
}
/** Prevent instances of this class from being copied (As this class contains pointers) */
CPPBoxWithNonMaximaSuppressionLimit(const CPPBoxWithNonMaximaSuppressionLimit &) = delete;
/** Prevent instances of this class from being copied (As this class contains pointers) */
CPPBoxWithNonMaximaSuppressionLimit &operator=(const CPPBoxWithNonMaximaSuppressionLimit &) = delete;
/** Configure the BoxWithNonMaximaSuppressionLimit CPP kernel
*
* @param[in] scores_in The scores input tensor of size [count, num_classes]. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32
* @param[in] boxes_in The boxes input tensor of size [count, num_classes * 4].
* Data types supported: QASYMM16 with 0.125 scale and 0 offset if @p scores_in is QASYMM8/QASYMM8_SIGNED, otherwise same as @p scores_in
* @param[in] batch_splits_in The batch splits input tensor of size [batch_size]. Data types supported: Same as @p scores_in
* @note Can be a nullptr. If not a nullptr, @p scores_in and @p boxes_in have items from multiple images.
* @param[out] scores_out The scores output tensor of size [N]. Data types supported: Same as @p scores_in
* @param[out] boxes_out The boxes output tensor of size [N, 4].
* Data types supported: QASYMM16 with 0.125 scale and 0 offset if @p scores_in is QASYMM8/QASYMM8_SIGNED, otherwise same as @p scores_in
* @param[out] classes The classes output tensor of size [N]. Data types supported: Same as @p scores_in
* @param[out] batch_splits_out (Optional) The batch splits output tensor. Data types supported: Same as @p scores_in
* @param[out] keeps (Optional) The keeps output tensor of size [N]. Data types supported: Same as @p scores_in
* @param[in] keeps_size (Optional) Number of filtered indices per class tensor of size [num_classes]. Data types supported: U32.
* @param[in] info (Optional) BoxNMSLimitInfo information.
*/
void configure(const ITensor *scores_in,
const ITensor *boxes_in,
const ITensor *batch_splits_in,
ITensor *scores_out,
ITensor *boxes_out,
ITensor *classes,
ITensor *batch_splits_out = nullptr,
ITensor *keeps = nullptr,
ITensor *keeps_size = nullptr,
const BoxNMSLimitInfo info = BoxNMSLimitInfo());
/** Static function to check if given info will lead to a valid configuration of @ref CPPDetectionOutputLayer
*
* @param[in] scores_in The scores input tensor of size [count, num_classes]. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32
* @param[in] boxes_in The boxes input tensor of size [count, num_classes * 4].
* Data types supported: QASYMM16 with 0.125 scale and 0 offset if @p scores_in is QASYMM8/QASYMM8_SIGNED, otherwise same as @p scores_in
* @param[in] batch_splits_in The batch splits input tensor of size [batch_size]. Data types supported: Same as @p scores_in
* @note Can be a nullptr. If not a nullptr, @p scores_in and @p boxes_in have items from multiple images.
* @param[in] scores_out The scores output tensor of size [N]. Data types supported: Same as @p scores_in
* @param[in] boxes_out The boxes output tensor of size [N, 4].
* Data types supported: QASYMM16 with 0.125 scale and 0 offset if @p scores_in is QASYMM8/QASYMM8_SIGNED, otherwise same as @p scores_in
* @param[in] classes The classes output tensor of size [N]. Data types supported: Same as @p scores_in
* @param[in] batch_splits_out (Optional) The batch splits output tensor. Data types supported: Same as @p scores_in
* @param[in] keeps (Optional) The keeps output tensor of size [N]. Data types supported: Same as @p scores_in
* @param[in] keeps_size (Optional) Number of filtered indices per class tensor of size [num_classes]. Data types supported: U32.
* @param[in] info (Optional) BoxNMSLimitInfo information.
*
* @return a status
*/
static Status validate(const ITensorInfo *scores_in,
const ITensorInfo *boxes_in,
const ITensorInfo *batch_splits_in,
const ITensorInfo *scores_out,
const ITensorInfo *boxes_out,
const ITensorInfo *classes,
const ITensorInfo *batch_splits_out = nullptr,
const ITensorInfo *keeps = nullptr,
const ITensorInfo *keeps_size = nullptr,
const BoxNMSLimitInfo info = BoxNMSLimitInfo());
// Inherited methods overridden:
void run() override;
private:
MemoryGroup _memory_group;
CPPBoxWithNonMaximaSuppressionLimitKernel _box_with_nms_limit_kernel;
const ITensor *_scores_in;
const ITensor *_boxes_in;
const ITensor *_batch_splits_in;
ITensor *_scores_out;
ITensor *_boxes_out;
ITensor *_classes;
ITensor *_batch_splits_out;
ITensor *_keeps;
Tensor _scores_in_f32;
Tensor _boxes_in_f32;
Tensor _batch_splits_in_f32;
Tensor _scores_out_f32;
Tensor _boxes_out_f32;
Tensor _classes_f32;
Tensor _batch_splits_out_f32;
Tensor _keeps_f32;
bool _is_qasymm8;
};
} // namespace arm_compute
#endif // ACL_ARM_COMPUTE_RUNTIME_CPP_FUNCTIONS_CPPBOXWITHNONMAXIMASUPPRESSIONLIMIT_H
|