1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
/*
* Copyright (c) 2017-2021, 2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_ISCHEDULER_H
#define ARM_COMPUTE_ISCHEDULER_H
#include "arm_compute/core/CPP/CPPTypes.h"
#include "arm_compute/core/experimental/Types.h"
#include "arm_compute/core/Types.h"
#include <functional>
#include <limits>
namespace arm_compute
{
class ICPPKernel;
class ITensor;
class Window;
/** Scheduler interface to run kernels */
class IScheduler
{
public:
/** Strategies available to split a workload */
enum class StrategyHint
{
STATIC, /**< Split the workload evenly among the threads */
DYNAMIC, /**< Split the workload dynamically using a bucket system */
};
/** Function to be used and map a given thread id to a logical core id
*
* Mapping function expects the thread index and total number of cores as input,
* and returns the logical core index to bind against
*/
using BindFunc = std::function<int(int, int)>;
/** When arm_compute::ISchedular::Hints::_split_dimension is initialized with this value
* then the schedular is free to break down the problem space over as many dimensions
* as it wishes
*/
static constexpr unsigned int split_dimensions_all = std::numeric_limits<unsigned>::max();
/** Scheduler hints
*
* Collection of preferences set by the function regarding how to split a given workload
*/
class Hints
{
public:
/** Constructor
*
* @param[in] split_dimension Dimension along which to split the kernel's execution window.
* @param[in] strategy (Optional) Split strategy.
* @param[in] threshold (Optional) Dynamic scheduling capping threshold.
*/
Hints(unsigned int split_dimension, StrategyHint strategy = StrategyHint::STATIC, int threshold = 0)
: _split_dimension(split_dimension), _strategy(strategy), _threshold(threshold)
{
}
/** Set the split_dimension hint
*
* @param[in] split_dimension Dimension along which to split the kernel's execution window.
*
* @return the Hints object
*/
Hints &set_split_dimension(unsigned int split_dimension)
{
_split_dimension = split_dimension;
return *this;
}
/** Return the prefered split dimension
*
* @return The split dimension
*/
unsigned int split_dimension() const
{
return _split_dimension;
}
/** Set the strategy hint
*
* @param[in] strategy Prefered strategy to use to split the workload
*
* @return the Hints object
*/
Hints &set_strategy(StrategyHint strategy)
{
_strategy = strategy;
return *this;
}
/** Return the prefered strategy to use to split workload.
*
* @return The strategy
*/
StrategyHint strategy() const
{
return _strategy;
}
/** Return the granule capping threshold to be used by dynamic scheduling.
*
* @return The capping threshold
*/
int threshold() const
{
return _threshold;
}
private:
unsigned int _split_dimension{};
StrategyHint _strategy{};
int _threshold{};
};
/** Signature for the workloads to execute */
using Workload = std::function<void(const ThreadInfo &)>;
/** Default constructor. */
IScheduler();
/** Destructor. */
virtual ~IScheduler() = default;
/** Sets the number of threads the scheduler will use to run the kernels.
*
* @param[in] num_threads If set to 0, then one thread per CPU core available on the system will be used, otherwise the number of threads specified.
*/
virtual void set_num_threads(unsigned int num_threads) = 0;
/** Sets the number of threads the scheduler will use to run the kernels but also using a binding function to pin the threads to given logical cores
*
* @param[in] num_threads If set to 0, then one thread per CPU core available on the system will be used, otherwise the number of threads specified.
* @param[in] func Binding function to use.
*/
virtual void set_num_threads_with_affinity(unsigned int num_threads, BindFunc func);
/** Returns the number of threads that the SingleThreadScheduler has in its pool.
*
* @return Number of threads available in SingleThreadScheduler.
*/
virtual unsigned int num_threads() const = 0;
/** Runs the kernel in the same thread as the caller synchronously.
*
* @param[in] kernel Kernel to execute.
* @param[in] hints Hints for the scheduler.
*/
virtual void schedule(ICPPKernel *kernel, const Hints &hints) = 0;
/** Runs the kernel in the same thread as the caller synchronously.
*
* @param[in] kernel Kernel to execute.
* @param[in] hints Hints for the scheduler.
* @param[in] window Window to use for kernel execution.
* @param[in] tensors Vector containing the tensors to operate on.
*/
virtual void schedule_op(ICPPKernel *kernel, const Hints &hints, const Window &window, ITensorPack &tensors) = 0;
/** Execute all the passed workloads
*
* @note There is no guarantee regarding the order in which the workloads will be executed or whether or not they will be executed in parallel.
*
* @param[in] workloads List of workloads to run
* @param[in] tag String that can be used by profiling tools to identify the workloads run by the scheduler (Can be null).
*/
virtual void run_tagged_workloads(std::vector<Workload> &workloads, const char *tag);
/** Get CPU info.
*
* @return CPU info.
*/
CPUInfo &cpu_info();
/** Get a hint for the best possible number of execution threads
*
* @warning In case we can't work out the best number of threads,
* std::thread::hardware_concurrency() is returned else 1 in case of bare metal builds
*
* @return Best possible number of execution threads to use
*/
unsigned int num_threads_hint() const;
protected:
/** Execute all the passed workloads
*
* @note there is no guarantee regarding the order in which the workloads will be executed or whether or not they will be executed in parallel.
*
* @param[in] workloads Array of workloads to run
*/
virtual void run_workloads(std::vector<Workload> &workloads) = 0;
/** Common scheduler logic to execute the given kernel
*
* @param[in] kernel Kernel to execute.
* @param[in] hints Hints for the scheduler.
* @param[in] window Window to use for kernel execution.
* @param[in] tensors Vector containing the tensors to operate on.
*/
void schedule_common(ICPPKernel *kernel, const Hints &hints, const Window &window, ITensorPack &tensors);
/** Adjust the number of windows to the optimize performance
* (used for small workloads where smaller number of threads might improve the performance)
*
* @param[in] window Window to use for kernel execution
* @param[in] split_dimension Axis of dimension to split
* @param[in] init_num_windows Initial number of sub-windows to split
* @param[in] kernel Kernel to execute
* @param[in] cpu_info The CPU platform used to create the context.
*
* @return Adjusted number of windows
*/
std::size_t adjust_num_of_windows(const Window &window,
std::size_t split_dimension,
std::size_t init_num_windows,
const ICPPKernel &kernel,
const CPUInfo &cpu_info);
private:
unsigned int _num_threads_hint = {};
};
} // namespace arm_compute
#endif /* ARM_COMPUTE_ISCHEDULER_H */
|